不知为何我下载的GWD31, 数学题号跟大家的版本不对应~~
查不到, 只好在这里开新帖提问了, 斑斑请原谅!
GWD-3-Q16:
If n is a positive integer and r is the remainder when (n-1)(n+1) is divided by 24, what is the value of r?
(1) 2 is not a factor of n.
(2) 3 is not a factor of n.
答案C.
谢谢!
举报
from (1), we can get numbers such as 1,3,5,7,9,11,13,17,19,and etc.
from (2), we can get numbers such as 1,2,4,5,7,8,10,11,13,14,16,20, and etc.
combine (1) and (2), we can get numbers 1,5,7,13,and etc.
1-1=0, 1+1=2->0*2=0->0/24=0, remaining=0
5-1=4, 5+1=6->4*5=24->24/24=1,remaining=0
7-1=6, 7+1=8->6*8=48->48/24=2, remaining=0
11-1=10, 11+1=12->10*12=120->120/24=5, remaining=0
13-1=12,13+1=14->12*14=168->168/24=7, remaining=0
Therefore, C is the correction answer.
n=6k+5/6k+1
这样简单些
若 n = 6k+5,那么 (n-1)(n+1) = (6k+4)(6k+6) = 12(3k+2)(k+1),无法判定是否能被 24 整除?
同理,若 n = 6k+1,也无法判定?
n = 6k+1, 和n=6k+5是怎么得出来的?为什么会有这个因式?
不好意思,
发表回复
手机版|ChaseDream|GMT+8, 2025-9-4 11:26 京公网安备11010202008513号 京ICP证101109号 京ICP备12012021号
ChaseDream 论坛
© 2003-2025 ChaseDream.com. All Rights Reserved.