- UID
- 607912
- 在线时间
- 小时
- 注册时间
- 2011-2-21
- 最后登录
- 1970-1-1
- 主题
- 帖子
- 性别
- 保密
|
according to WIKIPEDIA, ZERO is EVEN
Zero is an even number. In other words, its parity—the quality of an integer being even or odd—is even. Zero fits the definition of "even number": it is an integer multiple of 2, namely 0 × 2. As a result, zero shares all the properties that characterize even numbers: 0 is evenly divisible by 2, 0 is surrounded on both sides by odd numbers, 0 is the sum of an integer (0) with itself, and a set of 0 objects can be split into two equal sets.
Since definitions can change, another approach is to set them aside and consider how zero fits into the patterns formed by other even numbers. The parity rules of arithmetic, such as even ? even = even, require 0 to be even. Zero is the identity element of the group of even integers, and it is the starting case from which other even natural numbers are recursively generated. Applications of this recursion from graph theory to computational geometry rely on zero being even. Not only is 0 divisible by 2, it is divisible by every integer. In the binary numeral system used by computers, it is especially relevant that 0 is divisible by every power of 2; in this sense, 0 is the "most even" number of all.
Among the general public, the parity of zero can be a source of confusion. In reaction time experiments, most people are slower to label 0 as even than 2, 4, 6, or 8. In schools, both students and teachers often hold misconceptions that zero is odd, or both even and odd, or neither. Researchers in mathematics education propose that these misconceptions can become learning opportunities. Studying equalities like 0 × 2 = 0 can address students' doubts about calling 0 a number and using it in arithmetic. Discussing the issue in class can spark debates between students, during which they encounter basic principles of mathematical reasoning, such as the importance of definitions. Understanding zero is one goal, but there is also a wider lesson. Evaluating the parity of this exceptional number is an early example of a pervasive theme in mathematics: the abstraction of a familiar concept to an unfamiliar setting. |
|