ChaseDream
搜索
12下一页
返回列表 发新帖
查看: 1194|回复: 13
打印 上一主题 下一主题

GMAT 数学题(8)

[复制链接]
跳转到指定楼层
楼主
发表于 2011-1-4 10:03:58 | 只看该作者 回帖奖励 |正序浏览 |阅读模式
请问 ( 5999 + 6999 ) 的最小质因数是多少?为什么?
收藏收藏 收藏收藏
14#
 楼主| 发表于 2011-1-4 22:28:40 | 只看该作者
这道题还没想出来,还想问一题有点擦边的
100!+1 的最大质因子是多少? 谢谢
-- by 会员 小困蛇 (2011/1/4 15:49:59)





No two consecutive positive integers(n, n+1) are ever divisible by same number except 1.
So all the factors of 100! is not a factor of 100!

100! = 100*99*98*97 . . . *50*49*48* . . . .*4*3*2*1

Its prime factors include all the prime numbers smaller than 100.

So the smallest prime factor for (100! + 1) is bigger than 100.  So it might be 101! As to the biggest prime factor of (100! + 1), I have no idea.
13#
 楼主| 发表于 2011-1-4 22:05:22 | 只看该作者
When n is an odd number,

(an + bn) = (a+b)*(an-1 – an-2*b + an-3*b2 – an-4*b3 + . . . – a2*bn-3 + a*bn-2 – bn-1 )

So (a+b) is a factor of (an + bn ) when n is odd.
12#
 楼主| 发表于 2011-1-4 22:00:23 | 只看该作者
是11

(a+b)^n-a^n-b^n必然有(a+b)的因子
根据 杨辉三角
-- by 会员 心中的永恒 (2011/1/4 15:36:47)


Only if n is an odd number.

Right answer.
11#
发表于 2011-1-4 15:49:59 | 只看该作者
这道题还没想出来,还想问一题有点擦边的
100!+1 的最大质因子是多少? 谢谢
10#
发表于 2011-1-4 15:36:47 | 只看该作者
是11

(a+b)^n-a^n-b^n必然有(a+b)的因子
根据 杨辉三角
9#
发表于 2011-1-4 13:06:33 | 只看该作者
I think 999 is an odd number, since 11 is the common factor of 5 and 6, so it could be devided by 11, or the sum of 5 and 6.  I am not sure if this is right, as 7 and 13 cannot work.
8#
 楼主| 发表于 2011-1-4 13:02:57 | 只看该作者
What about 11? As 11 is the least common factor of 5 and 6.
-- by 会员 cherry12345 (2011/1/4 13:01:13)




I am curious about 11 as well.  However, how can you prove that the sum of ( 5999 + 6999 )  can be devided by 11, or the sum of 5 and 6???
7#
发表于 2011-1-4 13:01:13 | 只看该作者
What about 11? As 11 is the least common factor of 5 and 6.
6#
 楼主| 发表于 2011-1-4 12:51:14 | 只看该作者
By now, you propably can figure out that 5 is not a factor, either, since 6^n cannot be devided by 5.

What about 7?  

What about 11?

What about 13?

And why the above numbers can or cannot be the factor of the sum?
您需要登录后才可以回帖 登录 | 立即注册

手机版|ChaseDream|GMT+8, 2025-10-9 08:31
京公网安备11010202008513号 京ICP证101109号 京ICP备12012021号

ChaseDream 论坛

© 2003-2025 ChaseDream.com. All Rights Reserved.

返回顶部