- UID
- 491157
- 在线时间
- 小时
- 注册时间
- 2009-11-20
- 最后登录
- 1970-1-1
- 主题
- 帖子
- 性别
- 保密
|
167. If x, y,and z are integers and xy + z is an odd integer, is x an even integer? (1) xy+ xz is an even integer. (2) y +xz is an odd integer. --------------------------------------------------------------------------------------------------------------------------------------------------------【答案】A 【思路】xy + z = odd integer ,xy(odd)+z(even)= odd integer , xy(even)+z(odd)=odd integer (1) xy+ xz = even , xy(even)+xz(even)=even , so z 應該為odd , x為even , xz才為even , xy(odd)+xz(odd)=even , z 為even , xz不等於odd , 充份 (2) y + xz = odd integer ,y(odd)+xz(even)=odd , z=even ,x=even , y(even)+xz(odd)=odd ,z=odd,x=odd , 所以不充份
这个又没有简单的方法呢?解释看的太晕了?? |
|