ChaseDream
搜索
返回列表 发新帖
查看: 994|回复: 4
打印 上一主题 下一主题

费费6-9

[复制链接]
楼主
发表于 2004-8-25 00:28:00 | 只看该作者

费费6-9

9If n=p/qand both of p and q are non-zero integers, is n an integer?
(1) n^2 is an integer;


(2) n^3 is an integer;


请问为何答案D?


沙发
发表于 2004-8-25 02:31:00 | 只看该作者

n^2=(p/q)^2=k,so p=q(k)^1/2. If n^2 is an integer, then, k is an integer. Because integer=integer*integer, if p and q are non-zero integers, (k)^1/2 must be an integer. So p is devisable by q, so n is an integer.

With the same method, if n^3 is an integer, n is an integer.  

板凳
 楼主| 发表于 2004-8-25 04:03:00 | 只看该作者

Because integer=integer*integer, if p and q are non-zero integers, (k)^1/2 must be an integer.---可是分数乘分数也可为整数呀,如2/3*3/2=1,可否再说明白些?Thank you.

地板
发表于 2004-8-25 04:06:00 | 只看该作者

n^2 = p^2 / q^3 = p/ q * p / q, if p/q is not an integer then p/q * p/q is not an integer as well, but since p/q * p/q is an integer then that means p/q must be an integer;

the same goes for p^3/q^3

5#
 楼主| 发表于 2004-8-25 04:20:00 | 只看该作者
Thank you all!!! I know now.
您需要登录后才可以回帖 登录 | 立即注册

Mark一下! 看一下! 顶楼主! 感谢分享! 快速回复:

手机版|ChaseDream|GMT+8, 2024-11-18 17:11
京公网安备11010202008513号 京ICP证101109号 京ICP备12012021号

ChaseDream 论坛

© 2003-2023 ChaseDream.com. All Rights Reserved.

返回顶部