- UID
- 571444
- 在线时间
- 小时
- 注册时间
- 2010-10-6
- 最后登录
- 1970-1-1
- 主题
- 帖子
- 性别
- 保密
|
Is a-3b an even number?
1). b=3a+3 2). b-a is an odd number
Answer: C
From statement (1):Given that b=3a+3 Thus a-3b=a-3(3a+3) = -8a-9 which may be even, odd, integer, non-integer,rational etc ... Hence insufficient
From statement (2):Given that b-a is an odd number implies b is of the form b=(2k+1)+a where k isan integer Thus a-3b=a-3[(2k+1)+a] = -2a-6k-3 which may be even, odd, integer, non-integer, rational etc ..Henceinsufficient
Taking statement(1) and (2) together: -8a-9=-2a-6k-3 for some integer k or -6a=-6k+6=-6(k+1) implies a=k+1 Thus a is aninteger, either odd or even
Now statement (2)tells us that b is also an integer and that exactly one of {a,b} is even If a is even and bis odd, a-3b is odd If b is even and ais odd a-3b is odd
Thus (1) and (2)combined tell us that a-3b is an odd number...hence sufficient-------------------------------------------------------------------------- 在解释(2)的时候,分析中说假设b-a=2k+1,那么a-3b=-2a-6k-3,无法判断其奇偶。这个公式显然不对啊。 我的想法是a-3b=a-b-2b.既然b-a是奇数,那么a-b也一定是奇数,2b是偶数,所以(a-b)-2b就一定是奇数。 通过(2)就可判断其奇偶,所以应该选B |
|