ChaseDream
搜索
返回列表 发新帖
查看: 714|回复: 0
打印 上一主题 下一主题

Data Sufficiency - 42 答案是否有误?

[复制链接]
跳转到指定楼层
楼主
发表于 2011-4-25 22:05:06 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
Is a-3b an even number?

1). b=3a
+3
2). b-a is an odd number


Answer: C

From statement (1):Given that b=3a+3
Thus a-3b=a-3(3a+3) = -8a-9 which may be even, odd, integer, non-integer,rational etc ... Hence insufficient

From statement (2):Given that b-a is an odd number implies b is of the form b=(2k+1)+a where k isan integer
Thus a-3b=a-3[(2k+1)+a] = -2a-6k-3 which may be even, odd, integer, non-integer, rational etc ..Henceinsufficient

Taking statement(1) and (2) together: -8a-9=-2a-6k-3 for some integer k
or -6a=-6k+6=-6(k+1) implies a=k+1
Thus a is aninteger, either odd or even

Now statement (2)tells us that b is also an integer and that exactly one of {a,b} is even
If a is even and bis odd, a-3b is odd
If b is even and ais odd a-3b is odd

Thus (1) and (2)combined tell us that a-3b is an odd number...hence sufficient--------------------------------------------------------------------------
在解释(2)的时候,分析中说假设b-a=2k+1,那么a-3b=-2a-6k-3,无法判断其奇偶。这个公式显然不对啊。
我的想法是a-3b=a-b-2b.既然b-a是奇数,那么a-b也一定是奇数,2b是偶数,所以(a-b)-2b就一定是奇数。
通过(2)就可判断其奇偶,所以应该选B
收藏收藏 收藏收藏
您需要登录后才可以回帖 登录 | 立即注册

Mark一下! 看一下! 顶楼主! 感谢分享! 快速回复:

手机版|ChaseDream|GMT+8, 2025-9-15 02:51
京公网安备11010202008513号 京ICP证101109号 京ICP备12012021号

ChaseDream 论坛

© 2003-2025 ChaseDream.com. All Rights Reserved.

返回顶部