ChaseDream
搜索
返回列表 发新帖
查看: 1000|回复: 4
打印 上一主题 下一主题

模考软件里一道数学题~有人会吗?怎么解?谢谢~

[复制链接]
跳转到指定楼层
楼主
发表于 2010-1-13 13:42:29 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
The integer m and p are such that 2<m<p and m is not a factor of p . If r is the remainder when p is divided by m, is r>1?
(1)The greatest common factor of m and p is 2.
(2)The greatest common multiple of m and p is 30.
模考软件的答案是A.
收藏收藏 收藏收藏
沙发
发表于 2010-1-13 13:50:37 | 只看该作者
(2)The greatest common multiple of m and p is 30
          ~~~~~~what's this?

1) m and p have common factor 2, so m and p are even. the remainder must be >= 2
correct
2) the least common multiple?  if so, m and p can be 5, and 6
also can be 10 and 15
hence, the remainder can equal to 1 or 5, incorrect
板凳
 楼主| 发表于 2010-1-13 14:30:20 | 只看该作者

写错了唉,粗心

第二个条件是Least common multiple,显然LS已经看出来了。

谢谢,你的方法是对的。
地板
发表于 2010-1-13 17:18:20 | 只看该作者
不好意思,我觉得楼上的方法有问题:
1)“m and p have common factor 2, so m and p are even. the remainder must be > 2
correct”这是错误的,反例:m=4,p=6,r=1
2)“the least common multiple?  if so, m and p can be 5, and 6
also can be 10 and 15”这是错的,与条件1“The greatest common factor of m and p is 2”相冲突。

我的解题方法:
1)最小公倍数(The greatest common multiple of m and p is 30.):30=2*3*5;
2)最大公约数(The greatest common factor of m and p is 2.):m=2*X,n=2*Y;
再综合最小公倍数:m=2*3,n=2*5。所以m=6,n=10,r=4
5#
发表于 2010-1-13 18:35:03 | 只看该作者
不好意思,我觉得楼上的方法有问题:
1)“m and p have common factor 2, so m and p are even. the remainder must be > 2
correct”这是错误的,反例:m=4,p=6,r=1
2)“the least common multiple?  if so, m and p can be 5, and 6
also can be 10 and 15”这是错的,与条件1“The greatest common factor of m and p is 2”相冲突。

我的解题方法:
1)最小公倍数(The greatest common multiple of m and p is 30.):30=2*3*5;
2)最大公约数(The greatest common factor of m and p is 2.):m=2*X,n=2*Y;
再综合最小公倍数:m=2*3,n=2*5。所以m=6,n=10,r=4
-- by 会员 sunlight841206 (2010/1/13 17:18:20)





I have no idea what ur point is.
您需要登录后才可以回帖 登录 | 立即注册

Mark一下! 看一下! 顶楼主! 感谢分享! 快速回复:

手机版|ChaseDream|GMT+8, 2025-9-24 14:38
京公网安备11010202008513号 京ICP证101109号 京ICP备12012021号

ChaseDream 论坛

© 2003-2025 ChaseDream.com. All Rights Reserved.

返回顶部