ChaseDream
搜索
返回列表 发新帖
查看: 938|回复: 6
打印 上一主题 下一主题

帮我看看:prep-ds1-159这么分析对吗?

[复制链接]
楼主
发表于 2007-10-18 16:55:00 | 只看该作者

帮我看看:prep-ds1-159这么分析对吗?

159.       15957-!-item-!-187;#058&010660

If n is a positive integer and r is the remainder when (n - 1)(n + 1) is divided by 24, what is the value of r ?

(1) n is not divisible by 2.—>n肯定是奇数;n^2-1肯定是偶数可以被2整除;

(2) n is not divisible by 3.-->n^2-1肯定能被3整除. 这两个数能被6整除,但不能被24整除


[此贴子已经被作者于2007-10-18 17:14:31编辑过]
沙发
发表于 2007-10-18 17:04:00 | 只看该作者

回复:(lisony)帮我看看:prep-ds1-159这么分析对吗...

The answer on this one is C, correct?

Plug in some numbers, you quickly find that neither is sufficient.

Combine. N must be a prime greater 3. So sufficient.

板凳
 楼主| 发表于 2007-10-18 17:12:00 | 只看该作者
I choose C,but E is correct answer
地板
发表于 2007-10-18 17:51:00 | 只看该作者

Then your PREP is different from mine.  Just kidding.

I went back a minute ago and checked the answer on PREP. It says C!

 

5#
 楼主| 发表于 2007-10-18 22:59:00 | 只看该作者

看了一天书真是看晕了,是C,我看串了,谢谢!

6#
发表于 2007-10-19 15:07:00 | 只看该作者
是不是可以为样理解?
(1)n不能被2整除则n=2X-1,X为正整数。则n^2-1=4X(X-1),因为X和(X-1)是两个相邻的整数,所以n^2-1=4x(x-1)能被8整数.
(2)n不能被3整除,则n^2-1=(n-1)(n+1)。因n-1,n and n=1是三个相邻的整数而n又不能被3整除,则n-1,n+1其中一个必能被3整数,即(n-1)(n+1) is divisible by 3.
so, (1) and (2) together, n^2-1 is divisible by 24. C is correct answer.
7#
发表于 2009-3-8 11:32:00 | 只看该作者
以下是引用leenny在2007-10-19 15:07:00的发言:
是不是可以为样理解?
(1)n不能被2整除则n=2X-1,X为正整数。则n^2-1=4X(X-1),因为X和(X-1)是两个相邻的整数,所以n^2-1=4x(x-1)能被8整数.
(2)n不能被3整除,则n^2-1=(n-1)(n+1)。因n-1,n and n=1是三个相邻的整数而n又不能被3整除,则n-1,n+1其中一个必能被3整数,即(n-1)(n+1) is divisible by 3.
so, (1) and (2) together, n^2-1 is divisible by 24. C is correct answer.

fantastic explanation, thank you .

您需要登录后才可以回帖 登录 | 立即注册

Mark一下! 看一下! 顶楼主! 感谢分享! 快速回复:

手机版|ChaseDream|GMT+8, 2025-11-6 05:52
京公网安备11010202008513号 京ICP证101109号 京ICP备12012021号

ChaseDream 论坛

© 2003-2025 ChaseDream.com. All Rights Reserved.

返回顶部