ChaseDream
搜索
返回列表 发新帖
查看: 718|回复: 4
打印 上一主题 下一主题

TT GWD 28-Q30

[复制链接]
楼主
发表于 2007-9-4 12:47:00 | 只看该作者

TT GWD 28-Q30

Q32:

Seven different numbers are selected from the integers 1 to 100, and each number is divided by 7.  What is the sum of the remainders?

(1)   The range of the seven remainders is 6.

(2)    The seven numbers selected are consecutive integers.

                Answer: B

沙发
 楼主| 发表于 2007-9-4 12:51:00 | 只看该作者

I think the answer is D.

(1) When the range of seven different numbers is 6, the seven  numbers must be consecutive.

    Therefore, the sum of remainders will be 0+1+2+3+4+5+6=21

    Can someone help me?

板凳
发表于 2008-9-29 13:11:00 | 只看该作者
The question itself is questionable, Since what if the number drawed from the set range is 1,2,3,4,5,6 No remainder could be caculated out , i think the answer is E !
地板
发表于 2009-1-13 18:22:00 | 只看该作者
以下是引用kaijen在2007-9-4 12:51:00的发言:

I think the answer is D.

(1) When the range of seven different numbers is 6, the seven  numbers must be consecutive.

    Therefore, the sum of remainders will be 0+1+2+3+4+5+6=21

    Can someone help me?

the range of seven different numbers is 6

could be 0,1,1,2,3,5,6 or else,there are many choices.

"range" just means min to max is 6

5#
发表于 2009-1-14 05:28:00 | 只看该作者
range是什么呢?
最大值减去最小值呀。
7-1=6。1234567

只要是连续的7个整数,那么必然有一个余数是0,其他的余数之和是7的倍数。

自己拿数字代代就好。
条件a是不充分的。只要有个数字的余数是6,另一个是0,那么range就是6了。

答案是b没有错,题目没有什么问题。
您需要登录后才可以回帖 登录 | 立即注册

Mark一下! 看一下! 顶楼主! 感谢分享! 快速回复:

手机版|ChaseDream|GMT+8, 2025-6-12 21:48
京公网安备11010202008513号 京ICP证101109号 京ICP备12012021号

ChaseDream 论坛

© 2003-2025 ChaseDream.com. All Rights Reserved.

返回顶部