各位CDer
再次请教道题
Q4:
If n is the product of the integers from1 to 20 inclusive, what is the greatest integer k for which 2k is a factor of n?
A. 10
B. 12
C. 15
D. 18
E. 20
举报
2 can be the factor of these numbers 2(2^1x1),4(2^2),6(2^1x3),8(2^3),10(2^1x5),12(2^2x3),14(2^1x7),16(2^4),18(2^1x9),20(2^2x5), so k=1+2+1+3+1+2+1+4+1+2=18
提供一个新思路:
20!能分解成2的最高次幂,
奇数没有贡献,只考虑偶数序列2,4,6,。。。,20
得到2^10*10!
奇数没有贡献,只考虑偶数序列
再得到2^15*5!
再得到2^17*2!
所以2^18
If p is the product of the integers from 1 to 30, inclusive, what is the greatest integer k for which 3k is a factor of p?
C. 14
D. 16
E. 18
这道题按照类似的思路应该怎么解呢?
发表回复
手机版|ChaseDream|GMT+8, 2025-4-17 02:44 京公网安备11010202008513号 京ICP证101109号 京ICP备12012021号
ChaseDream 论坛
© 2003-2025 ChaseDream.com. All Rights Reserved.