Species interdependence in nature confers many benefits on the species involved, but it can also become a point of weakness when one species involved in the relationship is affected by a catastrophe. Thus, flowering plant species dependent on insect pollination, as opposed to self-pollination or wind pollination, could be endangered when the population of insect-pollinators is depleted by the use of pesticides. In the forests of New Brunswick, for example, various pesticides have been sprayed in the past 25 years in efforts to control the spruce budworm, an economically significant pest. Scientists have now investigated the effects of the spraying of Matacil, one of the anti-budworm agents that is least toxic to insect-pollinators. They studied Matacil’s effects on insect mortality in a wide variety of wild insect species and on plant fecundity, expressed as the percentage of the total flowers on an individual plant that actually developed fruit and bore seeds. They found that the most pronounced mortality after the spraying of Matacil occurred among the smaller bees and one family of flies, insects that were all important pollinators of numerous species of plants growing beneath the tree canopy of forests. The fecundity of plants in one common indigenous species, the red-osier dogwood, was significantly reduced in the sprayed areas as compared to that of plants in control plots where Matacil was not sprayed. This species is highly dependent on the insect-pollinators most vulnerable to Matacil. The creeping dogwood, a species similar to the red-osier dogwood, but which is pollinated by large bees, such as bumblebees, showed no significant decline in fecundity. Since large bees are not affected by the spraying of Matacil, these results add weight to the argument that spraying where the pollinators are sensitive to the pesticide used decreases plant fecundity. The question of whether the decrease in plant fecundity caused by the spraying of pesticides actually causes a decline in the overall population of flowering plant species still remains unanswered. Plant species dependent solely on seeds for survival or dispersal are obviously more vulnerable to any decrease in plant fecundity that occurs, whatever its cause. If, on the other hand, vegetative growth and dispersal (by means of shoots or runners) are available as alternative reproductive strategies for a species, then decreases in plant fecundity may be of little consequence. The fecundity effects described here are likely to have the most profound impact on plant species with all four of the following characteristics: a short life span, a narrow geographic range, an incapacity for vegetative propagation, and a dependence on a small number of insect-pollinator species. Perhaps we should give special attention to the conservation of such plant species since they lack key factors in their defenses against the environmental disruption caused by pesticide use. 5. It can be inferred that which of the following is true of plant fecundity as it is defined in the passage? (A) A plant’s fecundity decreases as the percentage of unpollinated flowers on the plant increases. (B) A plant’s fecundity decreases as the number of flowers produced by the plant decreases. (C) A plant’s fecundity increases as the number of flowers produced by the plant increases. (D) A plant’s fecundity is usually low if the plant relies on a small number of insect species for pollination.(A) (E) A plant’s fecundity is high if the plant can reproduce quickly by means of vegetative growth as well as by the production of seeds. 文章说到传粉的昆虫容易死会让结实率下降,但和unpollinated flowers 有什么关系? The fossil remains of the first flying vertebrates, the pterosaurs, have intrigued paleontologists for more than two centuries. How such large creatures, which weighed in some cases as much as a piloted hang-glider (hang-glider: n. 悬挂式滑翔机) and had wingspans from 8 to 12 meters, solved the problems of powered flight, and exactly what these creatures were—reptiles or birds—are among the questions scientists have puzzled over. Perhaps the least controversial assertion about the pterosaurs is that they were reptiles. Their skulls, pelvises, and hind feet are reptilian. The anatomy of their wings suggests that they did not evolve into the class of birds. In pterosaurs a greatly elongated fourth finger of each forelimb supported a wing-like membrane. The other fingers were short and reptilian, with sharp claws. In birds the second finger is the principal strut of the wing, which consists primarily of feathers. If the pterosaurs walked on all fours, the three short fingers may have been employed for grasping. When a pterosaur walked or remained stationary, the fourth finger, and with it the wing, could only turn upward in an extended inverted V-shape along each side of the animal’s body. The pterosaurs resembled both birds and bats in their overall structure and proportions. This is not surprising because the design of any flying vertebrate is subject to aerodynamic constraints. Both the pterosaurs and the birds have hollow bones, a feature that represents a savings in weight. In the birds, however, these bones are reinforced more massively by internal struts. Although scales typically cover reptiles, the pterosaurs probably had hairy coats. T. H. Huxley reasoned that flying vertebrates must have been warm-blooded because flying implies a high rate of metabolism, which in turn implies a high internal temperature. Huxley speculated that a coat of hair would insulate against loss of body heat and might streamline the body to reduce drag in flight. The recent discovery of a pterosaur specimen covered in long, dense, and relatively thick hairlike fossil material was the first clear evidence that his reasoning was correct. Efforts to explain how the pterosaurs became airborne have led to suggestions that they launched themselves by jumping from cliffs, by dropping from trees, or even by rising into light winds from the crests of waves. Each hypothesis has its difficulties. The first wrongly assumes that the pterosaurs’ hind feet resembled a bat’s and could serve as hooks by which the animal could hang in preparation for flight. The second hypothesis seems unlikely because large pterosaurs could not have landed in trees without damaging their wings. The third calls for high waves to channel updrafts. The wind that made such waves however, might have been too strong for the pterosaurs to control their flight once airborne. 7. It can be inferred from the passage that some scientists believe that pterosaurs (A) lived near large bodies of water (B) had sharp teeth for tearing food (C) were attacked and eaten by larger reptiles (D) had longer tails than many birds(A) (E) consumed twice their weight daily to maintain their body temperature 觉得ABCDE都是not mentioned内容,不知道答案A根据在那? 谢谢各位了  |