ChaseDream
搜索
返回列表 发新帖
查看: 1149|回复: 5
打印 上一主题 下一主题

求解一道DS奇偶性数学题

[复制链接]
跳转到指定楼层
楼主
发表于 2021-5-26 11:11:26 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
If S= x+ x^2+x^3+...+X^n, is S even? (S is the sum of all terms in geometric sequence)

(1) x is even
(2) n is even

答案是A
(不明白条件二为啥x的个数是偶数个 不能由此确定偶数个x相加 S为偶)
收藏收藏1 收藏收藏1
沙发
发表于 2021-5-26 15:00:43 | 只看该作者
你是对的
板凳
发表于 2021-5-26 15:24:56 | 只看该作者
应该选D吧
地板
发表于 2021-5-26 20:06:55 | 只看该作者
x是整数么
5#
发表于 2021-5-31 21:45:37 | 只看该作者
For (1),  x is even implies all x^i are even. S is a sum of even numbers. Therefore S is even.

For (2),  there are two cases:
           Case 1: x is even, from result of (1), S is even
           Case 2: x i odd, implies all x^i are odd. Since n is even and S is a sum of n  (even) odd numbers.
                       Therefore S is even.
In summary, the answer is D
6#
发表于 2021-5-31 21:47:50 | 只看该作者
james333 发表于 2021-5-31 21:45
For (1),  x is even implies all x^i are even. S is a sum of even numbers. Therefore S is even.

For  ...

Sorry, if x is an integer, the Answer is D. Otherwise, the answer is A.
您需要登录后才可以回帖 登录 | 立即注册

Mark一下! 看一下! 顶楼主! 感谢分享! 快速回复:

手机版|ChaseDream|GMT+8, 2025-4-18 09:05
京公网安备11010202008513号 京ICP证101109号 京ICP备12012021号

ChaseDream 论坛

© 2003-2025 ChaseDream.com. All Rights Reserved.

返回顶部