ChaseDream
搜索
返回列表 发新帖
查看: 831|回复: 6
打印 上一主题 下一主题

GWD-MATH上几道题 求大牛帮忙解答 不会了。。。大家来讨论下吧!~~

[复制链接]
跳转到指定楼层
楼主
发表于 2012-10-19 14:14:34 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
GWD-9Q32:  D
If n is a positive integer, what is the value of the hundreds digit of 30^n?
(1)      30^n > 1,000
(2)      n is a multiple of 3.
怎么算的呀?

GWD-9Q36: D
If x, y, and k are positive numbers such that (x/x+y)(10) + (x/x+y)(20) = k and if x < y, which of the following could be the value of k?   answer:18


GWD-7
Q11:A
If x is a positive integer, is the remainder 0 when 3^x + 1 is divided by 10?
(1)      x = 4n + 2, where n is a positive integer.
(2)      x > 4

Q29:A
If 10^50 – 74 is written as an integer in base 10 notation, what is the sum of the digits in that integer?

A.  424
B.  433    
C.440
D.449
E.467
收藏收藏 收藏收藏
沙发
 楼主| 发表于 2012-10-19 14:51:24 | 只看该作者
Q15 B
The average (arithmetic mean) of the 5 positive integers k, m, r, s, and t is 16, and k < m < r < s < t.  If t is 40, what is the greatest possible value of the median of the 5 integers?

16
18
19
20
22
板凳
发表于 2012-10-19 14:58:08 | 只看该作者
GWD-9Q32:  D
If n is a positive integer, what is the value of the hundreds digit of 30^n?
(1)      30^n > 1,000
(2)      n is a multiple of 3.

1.30^n>1000, n=2==>900. so n must be 3 or greater. 27000 when n is 4, anything >4, hundreds is 0. sufficient
2. n is 3, 6, 9, same as above, when n is 3 and greater, hundreds must be 0.

Q11:A
If x is a positive integer, is the remainder 0 when 3^x + 1 is divided by 10?
(1)      x = 4n + 2, where n is a positive integer.
(2)      x > 4

1. 3的幂(3, 3^2, 3^3, 3^4)个位数分别是 3, 9, 7, 1循环
when X = 4n+2, 3的X次幂的个位数永远是第二个, 也就是9. 因为 (4n+2)/4 永远余2.
9+1=10, 那么3^x+1 被10整除
2. 没办法确定。

If 10^50 – 74 is written as an integer in base 10 notation, what is the sum of the digits in that integer?

找规律
(10^3)-74 = 926 (1个9)
(10^4)-74 = 9926 (2个9)
(10^5)-74 = 99926 (3个9)
10^50-74 就有 50-2=48个9
48x9+2+6=440
地板
 楼主| 发表于 2012-10-19 15:06:20 | 只看该作者
3Q~~3Q  解得漂亮 明白了~~
5#
发表于 2012-10-19 15:09:55 | 只看该作者
Q15 B
The average (arithmetic mean) of the 5 positive integers k, m, r, s, and t is 16, and k < m < r < s < t.  If t is 40, what is the greatest possible value of the median of the 5 integers?

k, m, r, s, t
5x16=80, 80-40=40
k, m, r, s, 40,
假设
1, 2, r, s, 40
40-1-2=37,  37=18+19
so we have:
1, 2, 18, 19, 40。 18 is our greatest median while satisfying that k<m<r<s<t
6#
发表于 2012-10-19 16:12:48 | 只看该作者
If 10^50 – 74 is written as an integer in base 10 notation, what is the sum of the digits in that integer?

找规律
(10^3)-74 = 926 (1个9)
(10^4)-74 = 9926 (2个9)
(10^5)-74 = 99926 (3个9)
10^50-74 就有 50-2=48个9
48x9+2+6=420

我算了3遍,然后那计算器算了一遍,48*9+2+6=432+8=440啊........怎么会等于420的?
7#
发表于 2012-10-19 17:20:59 | 只看该作者
对不起我写错了
您需要登录后才可以回帖 登录 | 立即注册

Mark一下! 看一下! 顶楼主! 感谢分享! 快速回复:

手机版|ChaseDream|GMT+8, 2025-6-30 08:24
京公网安备11010202008513号 京ICP证101109号 京ICP备12012021号

ChaseDream 论坛

© 2003-2025 ChaseDream.com. All Rights Reserved.

返回顶部