- UID
- 677649
- 在线时间
- 小时
- 注册时间
- 2011-9-30
- 最后登录
- 1970-1-1
- 主题
- 帖子
- 性别
- 保密
|
From the consecutive integers -10 to 10, inclusive, 20 integers are randomly chosen with repitions allowed.What is the least possible value of the product of the 20 integers? A (-10)^20 B (-10)^10 C 0 D -(10)^19 E -(10)^20 Answer: If -10 is chosen an odd number of times and 10 is chosen the remaining number of times (for example, choose -10 once and choose 10 nineteen times, or choose -10 three times and choose 10 seventeen times), then the product of the 20 chosen numbers will be -(10)^20.Note that -(10)^20 is less than -(10)^19,the only other negative value among the answer choices. the correct answer is E
我看不懂这个答案啊!! 不是问的是从-10 到10 直间的数随机抽20个然后乘吗,为什么只看10和-10.。.。而且为什么还分什么奇偶次数!! 等待大神出现!!! |
|