记A=x³-27=(x-3)(x²+3x+9),B=x²-9=(x-3)(x+3) ,有A-B=(x-3)(x²+2x+6),实际上对于x²+2x+6这部分来说,因为它等于(x+1)²+5,所以是恒正的。当x<3时,A-B是负数,也就是x³与27之间的差值大于x²与9之间的差值,x>3时也一样。换句话说,如果连x³和27之间的差值都已经小于0.5,(可以round to 27),那么x²与9之间的差值会更小,所以一定能round to 9。选A。
看你这么认真,感动得稀里哗啦的。你的基本逻辑我大概明白了。就是要看看多/少乘以一个x是不是会放大还是缩小误差,以至于可以让我们决定round不round
倒是启发了我用一种更简单的方法来想这个问题。只要x是大于1的,每乘以一次就扩大了原数,so does 误差。所以少乘一个大于一的数有利于缩小误差~但是讲真,证明过程我没有很follow,主要是我感觉我考试的时候不会这么想。