ChaseDream
搜索
返回列表 发新帖
查看: 766|回复: 8
打印 上一主题 下一主题

这道数学题不会做:(

[复制链接]
楼主
发表于 2009-2-3 22:19:00 | 只看该作者

这道数学题不会做:(

If n is a positive integer and r is the remainder when (n-1)(n+1) is divided by 24, what is the value of r?

(1)     2 is not a factor of n.

(2)     3 is not a factor of n.

                  

A. Statement (1) ALONE is sufficient, but statement (2) alone is not sufficient.

B. Statement (2) ALONE is sufficient, but statement (1) alone is not sufficient.

C. BOTH statements TOGETHER are sufficient, but NEITHER statement ALONE is sufficient.

D. EACH statement ALONE is sufficient.

E. Statements (1) and (2) TOGETHER are NOT sufficient.

请高手赐教

沙发
发表于 2009-2-3 22:27:00 | 只看该作者
没有求证,就往里代数... 挨个试
板凳
发表于 2009-2-3 22:36:00 | 只看该作者
 就往里代数... 挨个试
agree!omg!这是这个月的jj题!
地板
发表于 2009-2-3 22:42:00 | 只看该作者
那答案是?
5#
发表于 2009-2-3 22:57:00 | 只看该作者
  the answer should be C, with r always 0.
6#
发表于 2009-2-3 23:06:00 | 只看该作者

代数法。

C

7#
发表于 2009-2-4 13:46:00 | 只看该作者

由(1),n是奇数,n=3,与,n=5带入试验,r不同,则(1)单独不成立;

由(2),n不是3的倍数,n=2,n=4带入实验,r不同,则(2)单独不成立;

(1)和(2)两个条件联合:

n是奇数,则(n-1)(n+1)是相邻的两个偶数积,是8的倍数(简单易证)

n不是3的倍数,则(n-1)与(n+1)之一必是3的倍数(简单易证)

联合是24的倍数

8#
发表于 2009-2-4 17:32:00 | 只看该作者

1+2 可知n=6k+1或6k-1,k>=0

(n-1)(n+1)=6k(6k-2)=12k(3k-1)或6k(6k+2)=12k(3k+1)

(3k-1)和(3k+1)都是偶数,故(n-1)(n+1)必能整除24

这题我考试遇到了,选c没问题的,考试的时候代数法就可以了,因为有时候会没有思路嘛

9#
发表于 2009-2-4 17:35:00 | 只看该作者

http://www.beatthegmat.com/gmat-prep-remainder-question-t16996.html

(1) says that n is odd. Thus n-1 and n+1 are both even. In fact, one of them must be divisible by 4, because every second even number is divisible by 4. So from (1) we know that (n-1)(n+1) is divisible by 8.

(2) says that n is not divisible by 3. Notice that n-1, n, and n+1 are three consecutive integers. If you have any three consecutive integers, exactly one of them must be divisible by 3. So if n is not divisible by 3, either n-1 or n+1 is.

Using both (1) and (2) together, we know (n-1)(n+1) is divisible by both 3 and 8, and therefore by 24.
看多題目GWD的数学题目都可以在这个上边找到.

您需要登录后才可以回帖 登录 | 立即注册

Mark一下! 看一下! 顶楼主! 感谢分享! 快速回复:

手机版|ChaseDream|GMT+8, 2025-6-29 02:15
京公网安备11010202008513号 京ICP证101109号 京ICP备12012021号

ChaseDream 论坛

© 2003-2025 ChaseDream.com. All Rights Reserved.

返回顶部