ChaseDream
搜索
返回列表 发新帖
查看: 598|回复: 5
打印 上一主题 下一主题

请教数学prep这题,答案是E,可是不会做

[复制链接]
楼主
发表于 2008-9-3 17:47:00 | 只看该作者

请教数学prep这题,答案是E,可是不会做

7.    905-!-item-!-187;#058&000575

For every positive even integer n, the function h(n) is defined to be the product of all the even integers from 2 to n, inclusive.  If p is the smallest prime factor of h(100) + 1, then p is

 

(A) between 2 and 10

(B) between 10 and 20

(C) between 20 and 30

(D) between 30 and 40

(E) greater than 40

沙发
发表于 2008-9-3 18:05:00 | 只看该作者
 this is definitely a difficult number properties question. Let's first consider the prime factors of h(100). According to the given function,
h(100) = 2*4*6*8*...*100

By factoring a 2 from each term of our function, h(100) can be rewritten as
2^50*(1*2*3*...*50).

Thus, all integers up to 50 - including all prime numbers up to 50 - are factors of h(100).

Therefore, h(100) + 1
    cannot have any prime factors 50 or below, since dividing this value by any of these prime numbers will yield a remainder of 1.

Since the smallest prime number that can be a factor of h(100) + 1 has to be greater than 50, The correct answer is E.
板凳
发表于 2008-9-3 18:09:00 | 只看该作者

h(100)=2*4*6*8*...100

=>(2*1)*(2*2)*(2*3)*(2*4)*.......*(2*50)

=>(2^50)*(1*2*3*4*...50)

=>h(100)+1=(2^50)*(1*2*3*4*...*50)+1

so when h(100)+1 is divided by any interger from 1 to 50, there will be a remaider 1

地板
发表于 2008-9-3 18:47:00 | 只看该作者
谢谢啊~~~正想知道这道
5#
 楼主| 发表于 2008-9-3 21:23:00 | 只看该作者
太感谢 大N们了 厉害啊~
6#
发表于 2008-9-4 04:58:00 | 只看该作者
2楼3楼都是NN啊!
您需要登录后才可以回帖 登录 | 立即注册

Mark一下! 看一下! 顶楼主! 感谢分享! 快速回复:

手机版|ChaseDream|GMT+8, 2024-11-27 14:10
京公网安备11010202008513号 京ICP证101109号 京ICP备12012021号

ChaseDream 论坛

© 2003-2023 ChaseDream.com. All Rights Reserved.

返回顶部