The integers m and p such that 2<m<p and m is not a factor of p. If r is the remainder when p is divided by m, is r>1?
1)the greated common factor of m and p is 2
2)the least common multiple of m and p is 30
The answer of this question is A, but I choose D, because 2) is sufficient:
Under the condition of 2) the possible solution is m=3,p=10 or m=5,p=6 so r=1
Who can explain the ets answer to me?
举报
if m=10, p=15,then r=5>1
I don't know why you choose D,it seems your explaination proves that D is wrong...
第一个条件怎么知道是对的?
(1)is sufficent ,for r>1 must be true!
(2) is not sufficent ,for r>1 or r=1.
这样理解DS题,对路吗?
我只能推出(1)但是对于(2) 我没能推出是不是充分的:
假设2<2a<2b
当然a不是b的约数
余数要么大于一,要么就等于一,因为不为约数所以余数不为零.
假设余数等于一,则2b可以表示成: 2ak+1=2b 其中k为2b除以2a的商,余数为一
则,2ak必为偶数,而加一为奇数,可是2b也为偶数,所以不能成立.
即,余数要么没有,要么就大于一.
发表回复
手机版|ChaseDream|GMT+8, 2025-7-15 22:16 京公网安备11010202008513号 京ICP证101109号 京ICP备12012021号
ChaseDream 论坛
© 2003-2025 ChaseDream.com. All Rights Reserved.