The sequence f(n)=(2n)! / n! is defined for all positive integer values of n. If x is defined as the product of first 10 ten terms of the sequence, which of the following is the greatest factor of x?
a.2^20
b.2^30
c. 2^45
d.2^52
e.2^55
ans. E
举报
这道题估计不大可能在gmat出现
考试的时候没有计算器瓦
the product of first 10 ten terms of the sequence=(2!/1!)*(4!/2!)
*...(20!/10!)=(2)*(3*4)*...(11*12*13*...20)=(2^1)*(2^2*3)*(2^3*.....)*...(2^10*...)=2^55*...
P.S.:the ...means the prime integre greater than 2
So E
楼上的是正解
有没有简单的办法, 考试没有这么多的时间啊! 谢谢数学大牛.
发表回复
手机版|ChaseDream|GMT+8, 2025-2-4 19:04 京公网安备11010202008513号 京ICP证101109号 京ICP备12012021号
ChaseDream 论坛
© 2003-2023 ChaseDream.com. All Rights Reserved.