ChaseDream
搜索
12下一页
返回列表 发新帖
查看: 2607|回复: 10
打印 上一主题 下一主题

[ESR] 数学OG18 391求解

[复制链接]
跳转到指定楼层
楼主
发表于 2018-10-3 05:21:42 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
If q, s, and t are all different numbers, is q < s < t ?
  • tq = |ts| + |sq|
  • t > q


答案是A

解释是:
  • It is given that tq = |ts| + |sq|, which can be rewritten without absolute values in four mutually exclusive and collectively exhaustive cases by making use of the algebraic definition of absolute value. Recall that |x| = x if x > 0, and |x| = –x if x < 0. Thus, for example, if ts < 0, then |ts| = –(ts).
    Case 1: t > s and s > q. In this case, ts > 0 and sq > 0, and so tq = |ts| + |sq| is equivalent to tq = (ts) + (sq), which is an identity. Therefore, the case for which t > sand s > q is consistent with the given information and the assumption tq = |ts| + |sq|.
    Case 2: t > s and s < q. In this case, ts > 0 and sq < 0, and so tq = |ts| + |sq| is equivalent to tq = (ts) − (sq), or s = q, which is not consistent with the assumption that q, s, and t are all different numbers. Therefore, the case for which t > s and s < q is not consistent with the given information and the assumption tq = |ts| + |sq|.
    Case 3: t < s and s > q. In this case, ts < 0 and sq > 0, and so tq = |ts| + |sq| is equivalent to tq = –(ts) + (sq), or t = s, which is not consistent with the assumption that q, s, and t are all different numbers. Therefore, the case for which t < s and s > q is not consistent with the given information and the assumption tq = |ts| + |sq|.
    Case 4: t < s and s < q. In this case, ts < 0 and sq < 0, and so tq = |ts| + |sq| is equivalent to tq = –(ts) − (sq), or t = q, which is not consistent with the assumption that q, s, and t are all different numbers. Therefore, the case for which t < s and s < q is not consistent with the given information and the assumption tq = |ts| + |sq|.

    The only case that is consistent with the given information and the assumption tq = |ts| + |sq| is Case 1. Therefore, it follows that t > s and s > q, and this implies q < s < t; SUFFICIENT.

DS题不是只能唯一确认是正确答案吗?为什么官方说明却是可以多种情况分析?OG的答案有些时候只能唯一证明,有些时候又可以多情况分析。。。





收藏收藏 收藏收藏
沙发
发表于 2018-10-3 06:08:35 | 只看该作者
I think you can ignore the explanation from OG, it makes a little more complicated. The only way to make t-q = abs (t-s)+ abs (s-q) is when t-s>0, and s-q>0. then you can get t>s, s>q. hence t>s>q, sufficient.
板凳
发表于 2018-10-3 07:48:55 | 只看该作者
The only way to make t-q = abs (t-s)+ abs (s-q) is when t-s>0, and s-q>0.  

please elaborate on this part ....honestly,i got  no clue
地板
发表于 2018-10-3 07:53:10 | 只看该作者
OG的解释一点问题没有,case1 已经成立了

OG只是一个一个的排除CASE 2 ,3 ,4 不会造成 t − q = |t − s| + |s − q|
如果2,3,4中有一个造成t − q = |t − s| + |s − q|

那么 q < s < t 就不成立了

OG的方法挺费时的,希望高手出来解答...下面的高手是说
The only way to make t-q = abs (t-s)+ abs (s-q) is when t-s>0, and s-q>0.但没说为啥..俺数学不好,不会推
5#
发表于 2018-10-3 08:07:50 | 只看该作者
|t − s| = t - s 或 s - t
|s − q| = s - q 或 q - s
想要得到|t − s| + |s − q| = t - q,只有|t − s| = t - s,|s − q| = s - q
6#
发表于 2018-10-3 08:54:39 | 只看该作者
郑布拉希莫维奇 发表于 2018-10-3 08:07
|t − s| = t - s 或 s - t
|s − q| = s - q 或 q - s
想要得到|t − s| + |s − q| = t - q,只有|t − s ...

为什么呢?   
我自己做了下,感觉必须要按OG的去推才行
是我太笨了
7#
发表于 2018-10-3 09:39:02 | 只看该作者
kluivert 发表于 2018-10-3 08:54
为什么呢?   
我自己做了下,感觉必须要按OG的去推才行
是我太笨了

如果想要|t − s| + |s − q| = t - q,就得把s约掉,不是等于t-s+s-q, 就是等于s-t-s+q, 第一个是t-q, 第二个是q-t.
只能是t-q呗
8#
发表于 2018-10-3 10:15:33 | 只看该作者
不用草稿纸的算法:
条件一:首先肯定t>p嘛,当s大于这两个数的时候,s=t,排除;当s小于这两个数,s=p,排除;只有当s在这两个数中间的时候,等式成立。
9#
发表于 2018-10-3 10:47:42 | 只看该作者
kluivert 发表于 2018-10-3 08:54
为什么呢?   
我自己做了下,感觉必须要按OG的去推才行
是我太笨了

emotional or self-blame is no help

我做這題的想法是這樣的

首先,絕對值就是距離,所以一定是非負的

所以 t-q = |t-s| + |s-q| 必然是正的,意思就是 t > q ,在數線上 t 在 q 的右邊,t-q 就是 t 到 q 的距離

A地到B地的距離 = A地到C地的距離 加上 C地到B地的距離  --> 表示C地正好位在A地到B地連線中的某處

所以 t-q = |t-s| + |s-q| 意思就是說 s 這點在 t 跟 q 的中間,綜合起來就是 q < s < t 了
10#
发表于 2018-10-3 11:23:06 | 只看该作者
吳縣大 发表于 2018-10-3 10:47
emotional or self-blame is no help

我做這題的想法是這樣的

牛 一划线结果就出来了 厉害 谢谢
您需要登录后才可以回帖 登录 | 立即注册

Mark一下! 看一下! 顶楼主! 感谢分享! 快速回复:

手机版|ChaseDream|GMT+8, 2025-9-14 14:31
京公网安备11010202008513号 京ICP证101109号 京ICP备12012021号

ChaseDream 论坛

© 2003-2025 ChaseDream.com. All Rights Reserved.

返回顶部