Lists S and T consist of the same number of positive integers. Is the median of the integers in S greater than the average (arithmetic mean) of the integers in T? (1)The integers in S are consecutive even integers, and the integers in T are consecutive odd integers. (2) The sum of the integers in S is greater than the sum of the integers in T.
A. Statement (1) ALONE is sufficient, but statement (2) alone is not sufficient. B. Statement (2) ALONE is sufficient, but statement (1) alone is not sufficient. C. BOTH statements TOGETHER are sufficient, but NEITHER statement ALONE is sufficient. D. EACH statement ALONE is sufficient. E. Statements (1) and (2) TOGETHER are NOT sufficient. 标准答案为c表示不理解……-- by 会员 无忧小乐 (2012/5/4 23:46:30)
题目:S和T这2个集合里有相同数量的的正数,S的中位数比T的平均数大吗? 1:S里都是连续偶数,T里是连续奇数。2:S的和大于T的和
先看1,很容易举反例。s(2,4) T(99,100)和S(100,102)T(1,3)结果不同 再看2,再举反例,S(100,5,5)T(1,1,1)和S(100,5,5),T(20,20,20)结果不能确定 再看C:规范的解法是。。因为S是连续偶数,所以S的中位数等于S的平均数,集合的平均数决定于元素的数量和集合的和,已知S的和大于T的和,数量一样,所以可知S的平均数大于T,即中位数大于T的平均数 建议用排除法。排了AB,在多代几个极端值到C,能算出来就一般是对的。。 |