Q13:
If the sequence x1, x2, x3, …, xn, … is such that x1 = 3 and xn+1 = 2xn – 1 for n ≥ 1, then x20 – x19 =
A. 219
B. 220
C. 221
D. 220 - 1
E. 221 - 1
Answer: A
求思路
举报
xn+1 = 2xn – 1 ---> xn+1 – 1= 2(xn – 1)----->xn – 1=(x1 – 1)*2^(n-1)
x20 – x19 =x19– 1=(3-1)*2^(19-1)=2^19
看不懂楼上的思路,哪个NN来解释一下啊,详细点,我好几年没学数学了,谢谢哦
E. 221 - 1 x1=3=2^!+1x2=5=2^2+1x3=9=2^3+1x4=17=2^4+1::x19=2^19+1x20=2^20+1so x20 – x19 = 2^19now got it?
x1=3=2^!+1
x2=5=2^2+1
x3=9=2^3+1
x4=17=2^4+1
:
x19=2^19+1
x20=2^20+1
so x20 – x19 = 2^19
now got it?
谢谢,知道了。
up
二楼一般法,四楼是归纳法.
都是牛人啊!!
amyding85 发表于 2006-9-4 17:54 Q13:If the sequence x1, x2, x3, …, xn, … is such that x1 = 3 and xn+1   ...
发表回复
手机版|ChaseDream|GMT+8, 2025-2-4 15:43 京公网安备11010202008513号 京ICP证101109号 京ICP备12012021号
ChaseDream 论坛
© 2003-2023 ChaseDream.com. All Rights Reserved.