ChaseDream
搜索
返回列表 发新帖
查看: 3691|回复: 7
打印 上一主题 下一主题

gwd 17-20

[复制链接]
楼主
发表于 2005-11-18 16:17:00 | 只看该作者

gwd 17-20

Q20:


For any integers x and y, min(x, y) and max(x, y) denote the minimum and the maximum of x and y, respectively.  For example, min(5, 2) = 2 and max(5, 2) = 5.  For the integer w, what is the value of min(10, w) ?


(1)     w = max(20, z) for some integer z.


(2)     w = max(10, w)


                  


A. Statement (1) ALONE is sufficient, but statement (2) alone is not sufficient.


B. Statement (2) ALONE is sufficient, but statement (1) alone is not sufficient.


C. BOTH statements TOGETHER are sufficient, but NEITHER statement ALONE is sufficient.


D. EACH statement ALONE is sufficient.


E. Statements (1) and (2) TOGETHER are NOT sufficient.


Answer: D


我选B

推荐
发表于 2005-12-12 06:40:00 | 只看该作者

For any integers x and y, min(x, y) and max(x, y) denote the minimum and the maximum of x and y, respectively.  For example, min(5, 2) = 2 and max(5, 2) = 5.  For the integer w, what is the value of min(10, w) ?


(1)     w = max(20, z) for some integer z.


(2)     w = max(10, w)


条件(1),如果z>20, w=z, w>20  min(10,w)=10


                       如果z<20, w=20, min(10, w)=10


条件(2),w = max(10, w)  w>10  min(10,w)=10


答案是D.

沙发
发表于 2005-11-18 16:31:00 | 只看该作者
条件1可以推出来,W大于或等于20,所以min(10, w)为10
板凳
发表于 2005-12-7 17:06:00 | 只看该作者

(1)     w = max(20, z) for some integer z.


--> max(20,z) is w, so w=20,


(the first condition is alittile tricky)


(2)     w = max(10, w)


---> w > 10


D

地板
发表于 2005-12-12 04:35:00 | 只看该作者

no, i didn't agree D.


For first one. w = max(20, z) for some integer z, W=Z, if Z>20

6#
发表于 2007-7-21 17:26:00 | 只看该作者
選項(1) w = max(20, z) for some integer z.的 for some integer z  是什麼意思阿??
7#
发表于 2008-8-7 04:02:00 | 只看该作者
也作错了这题.
8#
发表于 2016-11-20 14:38:30 | 只看该作者
“for some integer z”不是很好理解,但是其实这是干扰信息。
W=MAX(20,Z),已经足够能解释问题了。
您需要登录后才可以回帖 登录 | 立即注册

Mark一下! 看一下! 顶楼主! 感谢分享! 快速回复:

手机版|ChaseDream|GMT+8, 2024-11-26 14:33
京公网安备11010202008513号 京ICP证101109号 京ICP备12012021号

ChaseDream 论坛

© 2003-2023 ChaseDream.com. All Rights Reserved.

返回顶部