|
about"听力: 细胞生物学。关于细胞膜的扩散作用," Diffusion and OsmosisCell membranes are selectively permeable which means they are like the security gate at the school, some people can come and some cannot. The cell membrane is the barrier that allows some things to enter and leave, and others cannot pass.
Two ways of crossing the membrane: 1. passive transport – takes no energy to pass the membrane 2. active transport – takes energy to pass the membrane
Most common passive transport is called diffusion. Diffusion – the movement of materials across a cell membrane from an area of high concentration to low
Diffusion of water molecules is called osmosis.
DIFFUSION THROUGH A CELL MEMBRANE Introduction: Substances, such as water, ions, and molecules needed for cellular processes, can enter and leave cells by a passive process such as diffusion. Diffusion is random movement of molecules but has a net direction toward regions of lower concentration in order to reach an equillibrium. Simple passive diffusion occurs when small molecules pass through the lipid bilayer of a cell membrane. Facilitated diffusion depends on carrier proteins imbedded in the membrane to allow specific substances to pass through, that might not be able to diffuse through the cell membrane. Importance: The rate of diffusion is affected by properties of the cell, the diffusing molecule, and the surrounding solution. We can use simple equations and graphs to examine how particular molecules and their concentration affect the rate of diffusion. We can also compare simple and facilitated diffusion. Question: How do rates of simple and facilitated diffusion differ in response to a concentration gradient? Simple Diffusion Method: The rate of simple diffusion can be expressed by a modification of Fick's Law for small, nonpolar molecules. The rate of diffusion, dn/dt, is the change in the number of diffusing molecules inside the cell over time. Since the net movement of diffusing molecules depends on the concentration gradient, the rate of diffusion is directly proportional to the concentration gradient (dC/dx) across the membrane. The concentration gradient, dC/dx, is the difference in molecule concentration inside and outside of the cell across a cell membrane of width dx. This is equivalent to (Cout - Cin)/Dx where Cout and Cin are the substrate concentrations inside and outside the cell, and Dx is the width of the cell membrane. When the concentration outside the cell (Cout) is larger than inside the cell (Cin), the concentration gradient (dC/dx) will be positive, and net movement will be into the cell (positive value of dn/dt). We can describe the rate of diffusion as directly proportional to the concentration gradient by the following equation:
where A is the membrane area and P is the permeability constant. P is a constant relating the ease of entry of a molecule into the cell depending on the molecule's size and lipid solubility. Notice that when A and P are constants, this equation simply describes a line where dn/dt is a function of dC/dx. If we graph the rate of diffusion as a function of the concentration gradient, we get a simple linear function.
Interpretation: Notice the rate of diffusion increases as the concentration gradient increases. If the concentration of molecules outside the cell is very high relative to the internal cell concentration, the rate of diffusion will also be high. If the internal and external concentrations are similar (low concentration gradient) the rate of diffusion will be low. Facilitated Diffusion Method: Unlike simple diffusion, facilitated diffusion involves a limited number of carrier proteins. At low concentrations, molecules pass through the carrier proteins in a way similar to that of simple diffusion. At high solute concentrations, however, all the proteins are occupied with the diffusing molecules. Increasing the solute concentration further will not change the rate of diffusion. In other words, there is some maximum rate of diffusion (Vmax) when all the carrier pro teins are saturated. Therefore, we can not use a simple linear equation to describe the rate of diffusion. The rate of diffusion will increase with increasing solute concentration, but must asymptotically approach the saturation rate, Vmax. How quick ly the carrier proteins become saturated can be described by the variable K, the concentration gradient at which the rate of diffusion is 1/2 Vmax. K and Vmax depend on properties of the diffusing molecule, such as its permeability (P), as well as the surface area (A) of the cell, but for simplification we give the equation as:
We can graph this equation, dn/dt as a function of dC/dx, to see how the rate of diffusion changes with increasing solute concentration outside the cell. Interpretation: By graphing this equation, we see that at low concentrations of solute, the rate of diffusion into a cell occurs almost linearly, like simple diffusion. Notice that at low solute concentrations, the slope is much steeper than that of simple diffusion. Facilitated diffusion can increase the rate of diffusion of particular molecules at low concentrations. However, the rate of facilitated diffusion levels off with increasing solute concentration. Additional increases in external solute concentration cannot increase the rate of diffusion once carrier proteins are saturated. Conclusion: Passive diffusion of solute into a cell is linearly related to the concentration of solute outside the cell. Carrier proteins increase the rate of diffusion by allowing more solute to enter the cell. Facilitated diffusion, however, approaches a maximum rate as the carrier proteins become saturated with solute. Additional Questions: Simple Diffusion 1. We graphed dn/dt as a function of dC/dx. What is the slope of this line? What do increases or decreases in the slope mean biologically? 2. Now assume the concentration gradient is a constant. How does the rate of diffusion (dn/dt) change with the surface area (A) of the cell and the permeability (P) of the diffusing molecule? Graph dn/dt as a function of A or P and describe the function. Facilitated diffusion 1. Look at the equation for facilitated diffusion and find the horizontal asymptote. What happens to dn/dt as dC/dx approaches infinity? 2. Try graphing this equation with different values for K. How does this change the concentration at which the carrier proteins are saturated? 3. Compare simple and facilitated diffusion of glucose into erythrocytes by graphing rate of diffusion (micromoles per hour) as a function of external glucose concentration (mmol/cm3). For facilitated diffusion, Vmax=500 micromoles per hour and K=1.5 mmol/cm3. For simple diffusion, A x P is 3 cm3/hour. Membrane Transport Mechanisms
It is of seminal importance to the cell that it be able to transport molecules in and out of itself. Imagine that a protein having multiple transmembrane domains is structured so that these domains are arrayed in the plane of the membrane in a circle, thereby forming a cylinder, or, better yet, a barrel when viewed from the outside of the cell, with each of the staves of the barrel being one of the transmembrane domains. The center of the barrel could constitute a hole in the plasma membrane that is isolated from the lipid bilayer by an array of transmembrane domains around it. This hole could be used to transport substances into the cell or out from the cell. In fact, this hole can be a relatively hydrophilic environment if hydrophilic side chains from the membrane-spanning chains surrounding the hole protrude into the hole itself. In practice, given the structure of known membrane proteins, these holes are only large enough to allow the passage of small molecules through the plasma membrane, almost always simple ions like hydrogen, potassium or sodium. The ions may pass through the hole or orifice by passive diffusion, in which case the protein that allows this transport is called an ion channel. Alternatively, the transmembrane protein may invest energy, usually derived from ATP, to actively force ions from one side of the plasma membrane to the other, in which case it will be an ion pump. Given the importance of membrane transport, cells utilize a wide range of transport mechanisms. The mechanisms fall into one of three categories: simple diffusion, facilitated diffusion, and active transport. Simple diffusion means that the molecules can pass directly through the membrane. Diffusion is always down a concentration gradient. This limits the maximum possible concentration of the molecule inside the cell (or outside the cell if it is a waste product). The effectiveness of diffusion is also limited by the diffusion rate of the molecule (see Purves box 5.B). Therefore, though diffusion is an effective enough transport mechanism for some substances (such as H2O), the cell must utilize other mechanisms for many of its transport needs. Facilitated diffusion utilizes membrane protein channels to allow charged molecules (which otherwise could not diffuse across the cell membrane) to freely diffuse in a nd out of the cell. These channels comes into greatest use with small ions like K+, Na+, and Cl-. The speed of facilitated transport is limited by the number of protein channels available, whereas the speed of diffusion is dependent only on the concentration gradient. Active transport requires the expenditure of energy to transport the molecule from one side of the membrane to the other, but active transport is the only type of transport that can actually take molecules up their concentration gradient as well as down. Similarly to facilitated transport, active transport is limited by the number of protein transporters present. We are interested in two general categories of active transport, primary and secondary. Primary active transport involves using energy (usually through ATP hydrolysis) at the membrane protein itself to cause a conformational change that results in the transport of the molecule through the protein. The most well-known example of this is the Na+-K+ pump. The Na+-K+ pump is an antiport, it transports K+ into the cell and Na+ out of the cell at the same time, with the expenditure of ATP. Secondary active transport involves using energy to establish a gradient across the cell membrane, and then utilizing that gradient to transport a molecule of interest up its concentration gradient. An example of this mechanism is as follows: E. coli establishes a proton (H+) gradient across the cell membrane by using energy to pump protons out of the cell. Then those protons are coupled to lactose at the lactose permease transmembrane protein. The lactose permease uses the energy of the proton moving down its concentration gradient to transport lactose into the cell. This coupled transport in the same direction across the cell membrane is known as a symport. E. coli uses similar proton driven symports to transport ribose, arabinose, and several amino acids. Another secondary active transport system uses the Na+-K+ pump as the first step, generating a strong Na+ gradient across the cell membrane. Then the glucose-Na+ symport protein uses that Na+ gradient to transport glucose into the cell. This system is used in a novel way in human gut epithelial cells. These cells take in glucose and Na+ from the intestines and transport them through to the blood stream using the concerted actions of Na+-glucose symports, glucose permeases (a glucose facilitated diffusion protein), and Na+-K+ pumps. Note that the epithelial cells are joined together by tight junctions to prevent anything from leaking through from the intestines to the blood stream without first being filtered by the epithelial cells. |