ChaseDream
搜索
123下一页
返回列表 发新帖
查看: 6393|回复: 26
打印 上一主题 下一主题

FeiFei-134

[复制链接]
楼主
发表于 2004-10-26 07:00:00 | 只看该作者

FeiFei-134

134. The more television children watch, the less competent they are in mathematical knowledge. More than a third of children in the United States watch television for more than five hours a day; in South Korea the figure is only 7 percent. But whereas less than 15 percent of children in the United States understand advanced measurement and geometric concepts, 40 percent of South Korean children are competent in these areas. Therefore, if United States children are to do well in mathematics, they must watch less television.






Which one of the following is an assumption upon in advanced measurement and geometric concepts than are South Korean children?





A.        Children in the United States are less interested in advanced measurement and geometric concepts than are South Korean children.


B.        South Korean children are more disciplined about doing schoolwork than are


C.        Children who want to do well in advanced measurement and geometry will watch less television.



D.       A child’s ability in advanced measurement and geometry increases if he or she watches less than one hour of television a day.


E.        The instruction in advanced measurement and geometric concepts available to children in the United States is not substantially worse than that available to South Korean children.



答案是E 没有疑问


为什么C不是答案呢



conclusioif United States children are to do well in mathematics, --->they must watch less television.  


少看电视是必要条件


而C    Children who want to do well in advanced measurement and geometry will watch less television.


表达的就是United States children are to do well in mathematics, --->they must watch less television.  



查过原来的讨论贴 没有明白


http://forum.chasedream.com/dispbbs.asp?BoardID=24&ID=30357



另外我将C取非 也可以削弱结论


谢谢


[此贴子已经被作者于2004-10-26 7:00:55编辑过]
沙发
发表于 2004-10-26 09:12:00 | 只看该作者

To arrive the conclusion, the argument should assume two conditions:

First, watching less television can cause doing well in mathematics.

Second, children in the United States have the capability of doing it better, and other conditions such as the instruction in advanced measurement and geometric concepts are available to them.

In my opinion, assumption should either eliminate differences between premise and conclusion, or eliminate other factors which can effect on the casual-relationship between premise and conclusion.

C can be a support choice, but can not be assumption.

板凳
 楼主| 发表于 2004-10-26 09:20:00 | 只看该作者
why C can be a support choice, but can not be assumption.
地板
发表于 2004-10-26 10:03:00 | 只看该作者
Definition:An assumption is a statement that the writer accepts as true without any type of evidence.
5#
 楼主| 发表于 2004-10-26 10:08:00 | 只看该作者
leeon, C的问题出在哪
6#
发表于 2004-10-26 10:15:00 | 只看该作者


假设必须是一个不需要任何其它论据的事实。而且存在于推理过程当中:前提-结论。C将原文的结论做了一个可能发生的阐述。不能成为假设。

7#
发表于 2004-10-27 08:22:00 | 只看该作者

1。这道题的问题有点颠三倒四。不过和原文结合起来,意思应该为美国孩子在数学方面要比韩国小孩好,必须少看电视。这个结论要得出,必须假设下列哪个。

2。其实C就是原文第一句话推出来的,即原文第一句话对,C必然对。所以C不会是支持,也不会是假设。我想这就是你觉得将它取非后总觉得WEAKEN结论的原因吧。E派出他因,故为假设。

8#
 楼主| 发表于 2004-10-27 08:39:00 | 只看该作者
以下是引用lawyer_1在2004-10-27 8:22:00的发言:

2。其实C就是原文第一句话推出来的,即原文第一句话对,C必然对。所以C不会是支持,也不会是假设。我想这就是你觉得将它取非后总觉得WEAKEN结论的原因吧。E派出他因,故为假设。


E是假设 没有问题

C取非后 确实如你所说 所以我感觉假设用取非不是很有把握 容易把自己绕进去

我又想了想 C的错误是不是原文讲的是数学能力 而C中讲的是in advanced measurement and geometry 所以不对呢

如果C改为

Children who want to do well in math will watch less television.


是不是就对了呢


谢谢




9#
 楼主| 发表于 2004-10-28 04:03:00 | 只看该作者

lawyer, 帮我再看一下好吗


谢谢

10#
发表于 2004-10-28 04:55:00 | 只看该作者
以下是引用paopao在2004-10-27 8:39:00的发言:


E是假设 没有问题

C取非后 确实如你所说 所以我感觉假设用取非不是很有把握 容易把自己绕进去

我又想了想 C的错误是不是原文讲的是数学能力 而C中讲的是in advanced measurement and geometry 所以不对呢

如果C改为

Children who want to do well in math will watch less television.


是不是就对了呢


谢谢

当然不对,见7楼对C错的原因分析。
您需要登录后才可以回帖 登录 | 立即注册

Mark一下! 看一下! 顶楼主! 感谢分享! 快速回复:

所属分类: 法学院申请

近期活动

正在浏览此版块的会员 ()

手机版|ChaseDream|GMT+8, 2025-2-12 19:40
京公网安备11010202008513号 京ICP证101109号 京ICP备12012021号

ChaseDream 论坛

© 2003-2023 ChaseDream.com. All Rights Reserved.

返回顶部