一道答案易混的题(兼论充分型假设题的解法)
以后给答案和分析
24. No mathematical proposition can be proven true by observation. It follows that it is impossible to know any mathematical proposition to be true.
The conclusion follows logically if which one of the following is assumed?
(A) Only propositions that can be proven true can be known to be true
(B) Observation alone cannot be used to prove the truth of any proposition
(C) If a proposition can be proven true by observation then it can be known to be true.
(D) Knowing a proposition to be true is impossible only if it cannot be proved true by observation
(E) Knowing a proposition to be true requires proving it true by observation
我给这道题的目的有两个:1是说明充分型假设(假设选项,原文结论能合理推出)的TEST(答案检验法)。2是这种题易混的选项。
1。充分型假设的TEST:将选项加入到原文推理中,看看能否推出原文结论。即:正确答案+原文前提=原文结论。
2。这种题最易混的答案为:相反的推理。即变为从结论往前提推。而正确答案常是以逆否命题的面目出现。所以增加了难度。
3。做法:一是找出原文的推理。特别注意从那里推向那里。二是找出推理中的GAP。排除没有这个GAP的概念的选项,剩下常只有两个。看着两个那个是推理相反的选项,排除掉它。剩下的就是正确的。或者用TEST去对,看那个符合TEST。
该题:推理:因为 mathematical proposition NO PROVE BY OBSERVATION, 所以mathematical proposition IMPOSSIBLE KNOW TO BE TRUE(概念跳跃为PROVE By observation,KNOW)。推理方向从NO PROVE BY OBSERVATION到 IMPOSSIBLE KNOW。(注意:这里没有充分必要关系,即不能将原文写成NO PROVE BY OBSERVQATION---〉IMPOSSIBLE KNOW。)
A:意思为proposition KNOWN TO BE TRUE--->ROPOSITION CAN BE PROVE。该选项很容易混。因为推理方向对:逆否命题从NO PROVE 到IMPOSSIBLE KNOW。且概念也很象,包含和被包含的概念(proposition包含mathematical proposition),概念比原文大在这类题中是允许的。但它错在没有说明PROVE的方式,原文有说明PROVE的方式为BY OBSERVATION。这也是和E选项的唯一区别。所以A选项加BY OBSERVATION便为答案。
B:没有KNOW的概念。错
C:CAN BE PROVE BY OBSERVATION---〉 KNOWN TO BE TRUE。逆否命题为IMPOSSIBLE KNOWN TO BE TRUE--->CANNOT BE PROVE BY OBSERVATION。和原文推理相反。错
D:IMPOSSIBLE KNOWN TO BE TRUE--->CANNOT BE PROVE BY OBSERVATION.和原文推理相反。错。
E:KNOWN TO BE TRUE--->CAN BE PROVE BY OBSERVATION(注意REQUIRE带必要条件)。逆否命题为:CANNOT BE PROVE BY OBSERVATION---〉IMPOSSIBLE KNOWN TO BE TRUE。和原文推理方向一致。正确答案。
注明:该题较特殊。除了两个推理相反的选项。还有一个概念相似的混淆项。 |