ChaseDream
搜索
12
返回列表 发新帖
楼主: mypiao
打印 上一主题 下一主题

数学好的进一下

[复制链接]
11#
发表于 2008-12-24 11:49:00 | 只看该作者
以下是引用mypiao在2008-12-24 11:17:00的发言:

     没失望,我开始仰视了呵呵

我说我给你信箱发信你怎么不理我啊,原来一直在往上看呢。

活动一下颈椎吧,往下看看我的信。

12#
发表于 2008-12-24 22:54:00 | 只看该作者
也是只知道自由度的说法,N个数,还有平均值,第N个数实际没有信息,已经在均值中体现了。所以只能算N-1
13#
发表于 2008-12-25 10:37:00 | 只看该作者

Applying this to the original formula for standard deviation gives:

\begin{align}<br />\sigma & = {} \sqrt{\frac{1}{N} \left(\left(\sum_{i=1}^N x_i^2\right) - N\overline{x}^2\right)} \& {} = \sqrt{\frac{1}{N} \left(\sum_{i=1}^N x_i^2\right) - \overline{x}^2}.<br />\end{align}
            

In the real world, finding the standard deviation of an entire population is unrealistic except in certain cases,such as... where every member of a population is sampled. In most cases, the standard deviation is estimated by examining a random sample taken from the population. Using the definition given above for a data set and applying it to a small or moderately-sized sample results in an estimate that tends to be too low. The most common measure used is an adjusted version, the sample standard deviation, which is defined by

<br />s = \sqrt{\frac{1}{N-1} \sum_{i=1}^N (x_i - \overline{x})^2}\,,<br />
        

where \scriptstyle\{x_1,\,x_2,\,\ldots,\,x_N\} is the sample and \scriptstyle\overline{x} is the mean of the sample. The denominator N − 1 is the number of degrees of freedom in the vector \scriptstyle(x_1-\overline{x},\,\dots,\,x_N-\overline{x}).

14#
发表于 2008-12-25 10:38:00 | 只看该作者
汗,这个好像跟数学好没啥关系
15#
 楼主| 发表于 2008-12-25 19:05:00 | 只看该作者
以下是引用水模样在2008-12-25 10:37:00的发言:

Applying this to the original formula for standard deviation gives:

\begin{align}<br>\sigma & = {} \sqrt{\frac{1}{N} \left(\left(\sum_{i=1}^N x_i^2\right) - N\overline{x}^2\right)} \& {} = \sqrt{\frac{1}{N} \left(\sum_{i=1}^N x_i^2\right) - \overline{x}^2}.<br>\end{align}
   

In the real world, finding the standard deviation of an entire population is unrealistic except in certain cases,such as... where every member of a population is sampled. In most cases, the standard deviation is estimated by examining a random sample taken from the population. Using the definition given above for a data set and applying it to a small or moderately-sized sample results in an estimate that tends to be too low. The most common measure used is an adjusted version, the sample standard deviation, which is defined by

<br>s = \sqrt{\frac{1}{N-1} \sum_{i=1}^N (x_i - \overline{x})^2}\,,<br>
  

where \scriptstyle\{x_1,\,x_2,\,\ldots,\,x_N\} is the sample and \scriptstyle\overline{x} is the mean of the sample. The denominator N − 1 is the number of degrees of freedom in the vector \scriptstyle(x_1-\overline{x},\,\dots,\,x_N-\overline{x}).

     多谢啊,这下子真的弄懂了那.

   
    BTW:这个问题还是跟数学有关的吧?在证明向量\scriptstyle(x_1-\overline{x},\,\dots,\,x_N-\overline{x})的秩是N-1的时候,还是需要通过数学公式推导的吗

您需要登录后才可以回帖 登录 | 立即注册

Mark一下! 看一下! 顶楼主! 感谢分享! 快速回复:

正在浏览此版块的会员 ()

手机版|ChaseDream|GMT+8, 2025-7-19 05:45
京公网安备11010202008513号 京ICP证101109号 京ICP备12012021号

ChaseDream 论坛

© 2003-2025 ChaseDream.com. All Rights Reserved.

返回顶部