很多CDer问的排列组合的问题中最多的是关于排列后的组合问题,这种题目确实很头疼,且考场上时间紧迫,头脑紧张,更没有时间考虑这些问题,所以出错多在此处。 根据我的经验: 如果排列后重新组合一般是两种排列的组合,这时可以看排列中和组合中的两组事务的性质,如果有一方是同质的或者是随机的,则不用重新组合;需要组合的情况只在两者都是异质或者非随机的时候。 例题1:从10个人中取出2个人住进2个屋子,有多少种住法? 解答:C10,2,不用排列 可以这样考虑,取出2个人是随机的,房子没有说有区别,两个随机,所以不用排列 其实两个中有一个是随机的,就不用考虑排列了 两个都是有顺序或者编号的才用考虑排列
(这个答案可能不对) 例题2:从10个人中取出2个人住进A、B,2个屋子,有多少种住法? 解答:C10,2,不用排列 这样考虑,从10个中取2个出来,是C10,2,这两个是同质的,没有区别,取哪个放在A中还是B中是没有区别的,所以不用排列。
例题3:从编号1-10的人中取出2个人住进A、B,2个屋子,有多少种住法? 解答:P2,2×C10,2这时需要排列了
例题4:从10个小球中1取出2个放在A,B两个盒子里,有多少种放法? 答案:C10,2 小球同质
例题5:从编号1-10的小球中取出2个放在2个盒子里,有多少种放法? 答案:C10,2 盒子同质
个人观点,欢迎大家一起讨论弄清这个问题!
[此贴子已经被作者于2007-9-17 16:33:46编辑过] |