ChaseDream
搜索
返回列表 发新帖
查看: 13086|回复: 7
打印 上一主题 下一主题

A的发生概率为0.6,B发生的概率为0.5,问A,B都不发生的最大概率?

[复制链接]
楼主
发表于 2008-8-14 15:55:00 | 只看该作者

A的发生概率为0.6,B发生的概率为0.5,问A,B都不发生的最大概率?

1、  A的发生概率为0.6B发生的概率为0.5,问A,B都不发生的最大概率

     

解答是  0.4 请画两个圆分别代表A,B发生的概率,当B包含于A时,即是A,B 都不发生的最大概率。 IA+B-A*B+AB           AB=1-0.6-0.5+0.6*0.5=0.4

没看太懂,请NN指点下,谢谢

沙发
发表于 2008-8-14 16:05:00 | 只看该作者

AB都不发生。。就是A 和B以外最大的可能的区域概率。。。

使其最大。。。就把B 包含在A 里面。。。这样。。。外面区域概率是就最大了。。。所以。。。都不发生的时候。。就是全集减去A的概率。。。

不知讲清楚没。。

板凳
发表于 2008-8-15 16:41:00 | 只看该作者

举个例子吧,

例如 A : GMAT 9月换题库的时间是9月7号以前,概率是0.6

     B :GMAT 9月换题库的时间是 9 月 5 号 概率是 0.5 

那么A,B都不发生的情况是 在9月7号以后换题,概率是 1- 0.6 = 0.4

地板
发表于 2008-8-16 00:49:00 | 只看该作者

谢谢楼上两位 我也对这题有疑惑

现在明白了

5#
发表于 2008-8-16 01:29:00 | 只看该作者

还是有点不懂....为什么不是a包含于b?那样0.5不是更大?

楼主的那个算式算的也不是0.4......

菜鸟哈,数学都忘没了,求教........

6#
发表于 2008-8-16 09:42:00 | 只看该作者

这个举例太恰当啦!up

7#
发表于 2008-8-16 11:13:00 | 只看该作者
对楼上的算法,有不同意见。答案是对的,但是方法好像有不妥。


这道题是求P(A非 n B非)。因此,(我不知道如何表达A非与B非,所以大致表示一下吧)

(1)如果A与B相互独立,则所求=P(A非)* P (B非)=(1-0.6)*(1-0.5)=0.2

(2), 如果A与B不是相互独立,如果B发生时,A总是发生。则二者都不发生的概率取决于A的概率。所求=1-0.6=0.4.

所以,A与B都不发生的概率介于0.2-0.4之间,最大概率为0.4.

如果有任何疑问,可参考如下关于计算独立概率事件与相对概率事件的讲义


    

Independent Events


    

Two
events A and B are said to be independent if the fact that A has occurred or not does not affect your assessment of the
probability of B occurring.
Conversely, the fact that B has occurred
or not does not affect your assessment of the probability of A occurring.


    

1.      If A
and B are independent events, then


    

P(A
and B) = P(A
Ç
            B)
= P(A)
´
            P(B).


    

Note:
if two events E and F are independent, then E and
 are also independent,
as well as
 and F, and also  and .


    

Example: What is the probability of rolling 3 sixes
in a row with one die? 


    

 


    

            

    

Example: Oil Drilling


    

An
oil company decides to drill for oil in 3 separate locations. We assume:


    

·       
The
probability of finding oil at each location is 0.10 (or a 10% chance).


    

·       
The
event of finding oil at any location is independent
of what happens at another location.


    

Questions:
    1) What is P(find oil in all 3 locations)?


    

                        2) What is P(find oil in exactly 2 locations)?


    

                        3) What is P(find oil in at least 1 location)?


    

What
are the basic outcomes of this experiment?


    

1)
Define some events of interest:


    

A1
= find oil at location 1


    

A2
= find oil at location 2


    

A3
= find oil at location 3


    

        
            
                    
                    
                
                
                    
                    
                
                
                    
                    
                
                
                    
                    
                
                
                    
                    
                
            

                        

Then P(oil
  in all 3)


                    

                        

=
  P(A1
                            
Ç
                                A2
                            
Ç
                                A3)


                    

                        

 


                    

                        

=
  P(A1 and A2
  and A3)


                    

                        

 


                    

                        

=
  P(A1)
´
                                P(A2)
  
´
                                P(A3)


                    

                        

 


                    

                        

=
  (0.1)(0.1)(0.1)


                    

                        

 


                    

                        

=
  0.001


                    

    

    

 


    

    

    

2)
Define


    

        
            
                    
                    
                
                
                    
                    
                
                
                    
                    
                
            

                        

B1
                                


                    

                        

=
  oil in 1 and 2 but not 3


                    

                        

B2
                                


                    

                        

=
  oil in 1 and 3 but not 2


                    

                        

B3
                                


                    

                        

=
  oil in 2 and 3 but not 1


                    

    

    

Then
since B1, B2 and B3 are mutually exclusive (Are they?):


    

P(oil in exactly 2) = P(B1 or B2 or B3) = P(B1) + P(B2) + P(B3).


    

Therefore
P(B1)
= P(A1 and A2
and
) = P(A1) ×
            P(A2)
×
            P(
).


    

Recall
that for an event E, P(
) = 1 - P(E). Therefore, P(B1) = (0.1)(0.1)(1
- 0.1) = 0.009.


    

Since
the probability is the same for each location P(B2) = P(B3)
= P(B1) = 0.009. Therefore,


    

P(oil in exactly 2) = P(B1) + P(B2)
+ P(B3) = 0.027.


    

3)
As for the probability of finding oil in at least one location, we could solve this
by first finding the probability of oil in exactly 1 location, then in exactly
2 locations, then in all 3, and then add these probabilities (since the events
are mutually exclusive).


    

But
there is an easier way by looking at the complement event. What is the
complement of this event? It is the probability of finding no oil anywhere.


    

        
            
                    
                    
                
                
                    
                    
                
                
                    
                    
                
                
                    
                    
                
            

                        

P(no oil in all 3)


                    

                        

=
  P(
 and  and )


                    

                        

 


                    

                        

=
  P(
) ×
                                P(
) ×
                                P(
)


                    

                        

 


                    

                        

=
  (0.9)(0.9)(0.9)


                    

                        

 


                    

                        

=
  0.729.


                    

    

    

So
P(oil in at least 1 location) = 1 -
0.729 = 0.271.


    

    

    


    

        

    

Conditional Probability


    

Example: One of the businesses that have grown out
of the public's increased use of the internet has been providing internet
service to individual customers; those who provide this service are called
Internet Service Providers (ISPs). More recently, a number of ISPs have
developed business models whereby they do not need to charge customers for
internet service at all, by collecting fees from advertisers, and forcing the
non-paying customers to view these advertisements. Jupiter Communications
estimates that eventually 20% of web users will have a free ISP. 6% of all web
users, it is estimated, will have both a free ISP and a paid ISP account.
(Assume that an internet user must have at least one ISP.)


    

In
2003, what proportion of internet users is expected to do the following?


    

a)      subscribes to both a free ISP and a paid
ISP.


    

 


    

 


    

b)     subscribes only to a paid ISP.


    

 


    

 


    

c) subscribes only to a free ISP.


    

 


    

If
a user has a paid account, what is the probability that he/she also has a free
account?


    

 


    

    

    

In
these simple calculations, we are making use of the conditional probability
formula:


    

P(A|B) = P(A holds given that B holds) =


    

This
relationship is known as Bayes' Law, after the English clergyman Thomas Bayes
(1702-1761), who first derived it. Bayes' Law was later generalized by the
French mathematician Pierre-Simon LaPlace (1749-1827).


    

        
            
                    
                    
                    
                
                
                    
                    
                    
                
            

                        


                    

                        

 


                    

                        


                    

                        

Bayes


                    

                        

 


                    

                        

LaPlace


                    

    

    

Often
we make use of the equivalent formulae:


    

        
            
                    
                    
                
                
                    
                    
                
            

                        

P(A
                            
Ç
                                B)


                    

                        

=
  P(A|B)P(B)
  


                    

                        

or
                                P(A
                            
Ç
                                B)


                    

                        

=
  P(B|A)P(A).


                    

    

    

 


    

            

    

Example: Exactly 100 employees of a firm have each
purchased one ticket in a lottery, with the drawing to be held at the firm's
annual party. Of the 80 men who purchased tickets, 25 are single. Only 4 of the
women who purchased tickets are single.


    

a)
Find the probability that the lottery winner is married.


    

 


    

 


    

 


    

 


    

b)
Find the probability that the lottery winner is a married woman.


    

 


    

 


    

 


    

 


    

c)
If the winner is a man, what is the probability that he is married?


    

    

    

We
can use conditional probability to define independence. If two events A and B
are independent, then P(A
        
Ç
            B) = P(A)P(B).
In terms of conditional probability, this means:


    

        
            
                    
                    
                
                
                    
                    
                
                
                    
                    
                
            

                        

P(A|B)


                    

                        


                    

                        

 


                    

                        


                    

                        

 


                    

                        


                    

    

    

Does
this agree with our intuitive definition of independence?


    

Conditioning
can also help us calculate probabilities of much more complicated events.


    

A Useful Probability Rule: Sometimes it is easier to determine the
probability of an event A indirectly,
using another event B. This can be a
useful approach if the likelihood of A
is dependent on whether or not event B
occurs. For any events A and B,


    

        
            
                    
                    
                
                
                    
                    
                
            

                        

P(A)


                    

                        

=
  P(A
                            
Ç
                                B) + P(A
                            
Ç
                            
)


                    

                        

 


                    

                        

=
  P(A|B)P(B)
  + P(A|
)P().


                    

    

    

Example: Take a deck of 52 cards. Take out 2 cards
sequentially, but don't look at the first. What is the probability the second
card you chose was a
§?


    

 


    

            

8#
发表于 2016-6-18 21:10:55 | 只看该作者
不懂 啥时候把题理解成相互独立事件 啥时应该把题理解成这样的事件
您需要登录后才可以回帖 登录 | 立即注册

Mark一下! 看一下! 顶楼主! 感谢分享! 快速回复:

手机版|ChaseDream|GMT+8, 2025-12-10 07:19
京公网安备11010202008513号 京ICP证101109号 京ICP备12012021号

ChaseDream 论坛

© 2003-2025 ChaseDream.com. All Rights Reserved.

返回顶部