ChaseDream
搜索
返回列表 发新帖
查看: 367|回复: 1
打印 上一主题 下一主题

急救!!!

[复制链接]
楼主
发表于 2006-5-7 19:30:00 | 只看该作者

急救!!!

quartile就是小于median的所有数的median, hehe就是将所有的统计标本按顺序排列,再从头到尾分为个数相同的4堆quartile就是第一堆的最后一个,或是第二堆的第一个题目中,50个数,一定知道median是第25个或第26个同样,quartile是第12或是13个,the third quartile当然是37或是38个至于到底是37还是38,GRE不会为难你的,这两个数肯定一样
对Quartile的说明:Quartile(四分位数):
第0个Quartile实际为通常所说的最小值(MINimum)
第1个Quartile(En:1st Quartile)
第2个Quartile实际为通常所说的中分位数(中数、二分位分、中位数:Median)
第3个Quartile(En:3rd Quartile)
第4个Quartile实际为通常所说的最大值(MAXimum)
我想大家除了对1st、3rd Quartile不了解外,对其他几个统计量的求法都是比较熟悉的了,而求1st、3rd是比较麻烦的,下面以求1rd为例:
设样本数为n(即共有n个数),可以按下列步骤求1st Quartile:
(1)将n个数从小到大排列,求(n-1)/4,设商为i,余数为j
(2)则可求得1st Quartile为:(第i+1个数)*(4-j)/4+(第i+2个数)*j/4
例(已经排过序啦!):
1.设序列为{5},只有一个样本则:(1-1)/4 商0,余数0
1st=第1个数*4/4+第2个数*0/4=5
2.设序列为{1,4},有两个样本则:(2-1)/4 商0,余数1
1st=第1个数*3/4+第2个数*1/4=1.75
3.设序列为{1,5,7},有三个样本则:(3-1)/4 商0,余数2
1st=第1个数*2/4+第2个数*2/4=3
4.设序列为{1,3,6,10},四个样本:(4-1)/4 商0,余数2
1st=第1个数*1/4+第2个数*3/4=2.5
5.其他类推!
因为3rd与1rd的位置对称,这是可以将序列从大到小排(即倒过来排),再用1rd的公式即可求得:
例(各序列同上各列,只是逆排):
1.序列{5},3rd=5
2.{4,1},3rd=4*3/4+1*1/4=3.25
3.{7,5,1},3rd=7*2/4+5*2/4=6
4.{10,6,3,1},3rd=10*1/4+6*3/4=7


请问这些算法是求什么类型的题目?谢谢

沙发
发表于 2006-5-11 19:48:00 | 只看该作者
这种类型题似乎从来没在JJ和GMATPREP里看到过。
您需要登录后才可以回帖 登录 | 立即注册

Mark一下! 看一下! 顶楼主! 感谢分享! 快速回复:

手机版|ChaseDream|GMT+8, 2025-7-19 21:33
京公网安备11010202008513号 京ICP证101109号 京ICP备12012021号

ChaseDream 论坛

© 2003-2025 ChaseDream.com. All Rights Reserved.

返回顶部