ChaseDream
搜索
返回列表 发新帖
查看: 1891|回复: 8
打印 上一主题 下一主题

how many factors of 60 are greater than 根号60?

[复制链接]
跳转到指定楼层
楼主
发表于 2010-11-17 22:52:26 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
如题。
收藏收藏 收藏收藏
沙发
发表于 2010-11-17 23:08:13 | 只看该作者
60, 30, 20, 15, 12, 10
板凳
 楼主| 发表于 2010-11-18 16:50:16 | 只看该作者
要一个一个suan?omg
地板
发表于 2010-11-18 16:58:17 | 只看该作者
先看60一共有多少个因子
60=2^2*3*5
所以一共有(2+1)(1+1)(1+1)=12个因子
大于根号60的因子就是12/2=6个
5#
 楼主| 发表于 2010-11-18 17:10:25 | 只看该作者
(2+1).....那个怎么来的?
6#
发表于 2010-11-18 18:14:50 | 只看该作者
就是那几个质因子的指数加1再相乘
7#
 楼主| 发表于 2010-11-18 19:48:31 | 只看该作者
就是那几个质因子的指数加1再相乘
-- by 会员 bydgoodandevil (2010/11/18 18:14:50)


3Q~
8#
发表于 2010-11-19 05:24:37 | 只看该作者
就是那几个质因子的指数加1再相乘
-- by 会员 bydgoodandevil (2010/11/18 18:14:50)


why so?
9#
发表于 2010-11-19 06:13:10 | 只看该作者
Suppose a number X = (2^m) * (3^n) * (5^p), wherein m, n, and p are positive integers.

For a number Y to be a factor of X, Y needs to be expressed as Y = (2^a) * (3^b) * (5^c), wherein a can be chosen among 0, 1, . . . m; b can be chosen among 0, 1, . . . n; and c can be chosen among 0, 1, . . . p.  Therefore, the number of possible combinations of m,n,p for Y is : (m+1) * (n+1) * (p+1).  The number of possible factors for X is (m+1) * (n+1) * (p+1)

Then among all these factors, at most only one factor when times itself equals X.  The rest are in pairs, the product of which equals X. For the paired factors, one is greater than X^(1/2), while the other is smaller than X^(1/2).  

Therefore, let's calculate (m+1) * (n+1) * (p+1). If the product is an even number Z, then Z/2 would be the number of factors that will be greater than X^(1/2). If the product is an odd number Z, then (Z - 1)/2 would be the number of factors that will be greater than X^(1/2).

For example, 15 = 3 * 5 has 4 factors, two of which are greater than 15^(1/2); while 16 = 2^4 has 5 factors (including 4, the square root of 16!), two of which are greater than 16^(1/2).
您需要登录后才可以回帖 登录 | 立即注册

Mark一下! 看一下! 顶楼主! 感谢分享! 快速回复:

手机版|ChaseDream|GMT+8, 2025-11-12 13:14
京公网安备11010202008513号 京ICP证101109号 京ICP备12012021号

ChaseDream 论坛

© 2003-2025 ChaseDream.com. All Rights Reserved.

返回顶部