ChaseDream

标题: 一道答案易混的题(兼论充分型假设题的解法:分析在22楼) [打印本页]

作者: lawyer_1    时间: 2004-11-4 11:33
标题: 一道答案易混的题(兼论充分型假设题的解法:分析在22楼)

一道答案易混的题(兼论充分型假设题的解法:分析在22楼)

以后给答案和分析

24. No mathematical proposition can be proven true by observation. It follows that it is impossible to know any mathematical proposition to be true.

The conclusion follows logically if which one of the following is assumed?

(A) Only propositions that can be proven true can be known to be true

(B) Observation alone cannot be used to prove the truth of any proposition

(C) If a proposition can be proven true by observation then it can be known to be true.

(D) Knowing a proposition to be true is impossible only if it cannot be proved true by observation

(E) Knowing a proposition to be true requires proving it true by observation


作者: 携隐    时间: 2004-11-4 11:42
E。
作者: sunday_zhou    时间: 2004-11-4 11:53
同意选E(刚才写了我的一些推理,但系统好像有点问题,全没了)
作者: paopao    时间: 2004-11-5 02:34

D


这是典型的逻辑错误 没法证明是对的 所以就是错的


逻辑链如下 No mathematical proposition can be proven true by observation--->it is impossible to know any mathematical proposition to be true.


逆否 it is possible to know any mathematical proposition to be true. ---> mathematical proposition can be proven true by observation


只有D符合以上逆否命题


E偷换了概念 题目要求的是it is possible to know any mathematical proposition to be true 而E成为Knowing a proposition to be true 错


作者: wendygxl    时间: 2004-11-5 06:39

I agree D

I see . Thanks


作者: leeon    时间: 2004-11-5 11:27

D,

看到A only if B, B是A的充分条件,所以D中的推倒就是

it cannot be proved true by observation ->Knowing a proposition to be true is impossible .说白了D就是假设了原文的推倒关系。

E中requires, A requires B, 说明B是A的必要条件,推倒如下:

Knowing a proposition to be true->proving it true by observation ,这个不能推出原文的推倒。


作者: looook    时间: 2004-11-5 13:07

认为答案为E

提醒leeon我觉得你理解的有点问题看到A only if B BA的充分条件
应该为看到A only if B AB的充分条件







假设此处b=Knowing a propositon to be true
        a=Prove a the proposition true by Observation


原题的意思为a非->b非,所以b>a就是E选项。


选项Apropositions that can be proven trueby Observation做限定,那么等于说扩大了假设的范围。



B为无关选项。



C表达的逻辑为a->b,而原命题为a非->b非,所以不对。


D only if表示前者可以推出后者,(注意if表示后者可以推出前者,刚好相反)其逻辑意思为b->a非,参照原命题,所以D也不对。



[此贴子已经被作者于2004-11-5 13:11:50编辑过]

作者: sunday_zhou    时间: 2004-11-5 13:29

我理解此题的意思是:任何A都不能被B证明是正确的=》不可能得知A的正确性

D:要想知道A的正确性是不可能的,除非A不能被B证明是正确的,同意leeon的说法,这个是个对原文整个的改写,可并非是假设啊。

E:要想知道A是正确的,需要通过B来证明。与前提条件是一致的,没有问题啊?我觉得还是E比较好,请指教


作者: leeon    时间: 2004-11-5 13:57

To looook: A only if B=>有B必有A,所以B->A;B是A的充分条件。

To sunday_zhou: 这是LSAT中的充分型假设题形,也就是说假设是原文的充分条件,既该假设成立,原文必成立,和GMAT有所不同。


作者: stevewu    时间: 2004-11-5 16:39
以下是引用leeon在2004-11-5 13:57:00的发言:

To looook: A only if B=>有B必有A,所以B->A;B是A的充分条件。


   A only if B, B應該是A的必要條件而非充分條件哦, 亦即 非B->非A

   有錯請指正, thanks


作者: leeon    时间: 2004-11-5 17:04
以下是引用stevewu在2004-11-5 16:39:00的发言:


   A only if B, B應該是A的必要條件而非充分條件哦, 亦即 非B->非A

   有錯請指正, thanks


稍等,我前面的理解可能有点问题,再思考一下!


作者: leeon    时间: 2004-11-5 17:14

再来分析一下E:

E中requires, A requires B, 说明B是A的必要条件,推倒如下:

Knowing a proposition to be true->proving it(proposition) true by observation ,逆否一下:

no (proposition true by observation)->no (Knowing a proposition to be true)

看来还是E正确些,看来我吧if only 和only if 搞混了。


作者: xyl927    时间: 2004-11-5 23:35
I choose E. I am new here. I do not understand all the logical reasoning you presented above.  But my consciousness tells me that E is right. I tried several questions this morning. I do not even read the questions carefully and I do not know all the methods, but I have a strong feeling to the right answers. Maybe  it is instinct.
作者: gwachen    时间: 2004-11-6 18:02

I agree on E.

If E is changed, we cannot get the conclusion..

so I think E is the assumption of line of reasoning.


作者: grabbi    时间: 2004-11-6 19:39
e
作者: davidcopper    时间: 2004-11-8 20:57

这题应该就是找assumption, A不能直接得到结论B, 中间缺个条件就是答案E, A+E=B


没上过新东方,不知这是不是就是你们说的搭桥


[此贴子已经被作者于2004-11-8 20:59:01编辑过]

作者: 活在当下    时间: 2004-11-9 08:22

E


作者: hpp920    时间: 2004-11-10 08:58

我选E.

建议lawyer碰见典型的例子还这样贴出来,回头再写上具体的分析过程,象我等超级菜鸟一定大受益处.很喜欢这样的小教室!!!!


作者: LISAYUAN750616    时间: 2004-11-10 09:26
D
作者: paopao    时间: 2004-11-10 10:31
lawyer 赶紧公开答案和思路吧
作者: bryan0806    时间: 2004-11-10 13:22

想了好久 选D


一直在看D和E  最后看原文是impossible 而E是require 还要个非


所以不选


作者: lawyer_1    时间: 2004-11-12 02:14

我给这道题的目的有两个:1是说明充分型假设(假设选项,原文结论能合理推出)的TEST(答案检验法)。2是这种题易混的答案。


1。充分型假设的TEST:将选项加入到原文推理中,看看能否推出原文结论。即:正确答案+原文前提=原文结论。


2。这种题最易混的答案为:相反的推理。即变为从结论往前提推。而正确答案常是以逆否命题的面目出现。所以增加了难度。


3。做法:一是找出原文的推理。特别注意从那里推向那里。二是找出推理中的GAP。排除没有这个GAP的概念的选项,剩下常只有两个。看着两个那个是推理相反的选项,排除掉它。剩下的就是正确的。或者用TEST去对,看那个符合TEST。


该题:推理:因为 mathematical proposition NO PROVE BY OBSERVATION, 所以mathematical proposition  IMPOSSIBLE KNOW TO BE TRUE(概念跳跃为PROVE By observation,KNOW)。推理方向从NO PROVE BY OBSERVATION到 IMPOSSIBLE KNOW。(注意:这里没有充分必要关系,即不能将原文写成NO PROVE BY OBSERVQATION---〉IMPOSSIBLE KNOW。)


A:意思为proposition KNOWN TO BE TRUE--->ROPOSITION CAN BE PROVE。该选项很容易混。因为推理方向对:逆否命题从NO PROVE 到IMPOSSIBLE KNOW。且概念也很象,包含和被包含的概念(proposition包含mathematical proposition),概念比原文大在这类题中是允许的。但它错在没有说明PROVE的方式,原文有说明PROVE的方式为BY OBSERVATION。这也是和E选项的唯一区别。所以A选项加BY OBSERVATION便为答案。


B:没有KNOW的概念。错


C:CAN BE PROVE BY OBSERVATION---〉 KNOWN TO BE TRUE。逆否命题为IMPOSSIBLE KNOWN TO BE TRUE--->CANNOT BE PROVE BY OBSERVATION。和原文推理相反。错


D:IMPOSSIBLE KNOWN TO BE TRUE--->CANNOT BE PROVE BY OBSERVATION.和原文推理相反。错。


E:KNOWN TO BE TRUE--->CAN BE PROVE BY OBSERVATION(注意REQUIRE带必要条件)。逆否命题为:CANNOT BE PROVE BY OBSERVATION---〉IMPOSSIBLE KNOWN TO BE TRUE。和原文推理方向一致。正确答案。


注明:该题较特殊。除了两个推理相反的选项。还有一个概念相似的混淆项。


[此贴子已经被作者于2004-11-12 2:21:46编辑过]

作者: hpp920    时间: 2004-11-12 06:13

太佩服了, 希望多看到这样的分析文章!

哎,你是不是真是个lawyer呀? 你的脑袋怎么能够这么清晰!! 逻辑上我都用功快1个月了, 还是木头疙瘩一个! 我要重重的叹口气!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!


作者: paopao    时间: 2004-11-12 06:47

终于盼来了lawyer的解答 非常感谢 收获大大的


有几点疑问 继续请教lawyer


1.     推理关系:因为。。。所以。。 没有充分必要关系,我感觉没有什么本质不同。因为下面的选项,用的是充分必要,加上前提,推出结论。


2.     在什么题型中,包含与被包含关系是许可的。因为在一般的演绎题中,要求概念一致,不能扩大的。


3.     两个表达式请教,我的理解对吗? 我可能搞反了。


(D) Knowing a proposition to be true is impossible only if it cannot be proved true by observation


impossible to know be true -à cannot be prove by observation


Knowing a proposition to be true is impossible unless it cannot be proved true by observation


Know to be true-à  prove true by observation


4.我认为E的概念与原文不一致。 题目要求的是it is possible to know any mathematical proposition to be true 即原文表达的是可能性。而E成为Knowing a proposition to be true 错




作者: lawyer_1    时间: 2004-11-12 10:24

1。我提醒注意的目的是不要搞混充分必要和因果关系。对本题,你是对的。即即使原文为充分必要关系,也对。

2。演绎题从来没有这个说法。倒是归纳题有着说法。典型的是假设题中,答案为大前提。

3。第一对,第二错。应该为Know to be true-à   CANNOT prove true by observation(见充分必要条件指示词)

4。如果Knowing a proposition to be true 。那麽是不是就it is possible to know proposition to be true 。反之则不不对。


作者: paopao    时间: 2004-11-12 10:38
以下是引用lawyer_1在2004-11-12 10:24:00的发言:

2。演绎题从来没有这个说法。倒是归纳题有着说法。典型的是假设题中,答案为大前提。


lawyer: 你讲的其它我已明白了 是我将充分必要搞错了

第2条能否讲讲 总感觉心里没底

可能概念我也搞错了
[此贴子已经被作者于2004-11-12 10:38:29编辑过]

作者: bryan0806    时间: 2004-11-12 10:51

看来我也对充分必要搞错了


我理解(D)Knowing a proposition to be true is impossible only if it cannot be proved true by observation 成


cannot be proved true by observation  ->  Knowing a proposition to be true is impossible


一个问题请教 如果D改成(D)Knowing a proposition to be true is impossible if it cannot be proved true by observation


是不是正确答案 即改后的D可否理解成


cannot be proved true by observation  ->  Knowing a proposition to be true is impossible


作者: lawyer_1    时间: 2004-11-12 11:07

C,D改指示词都可为答案。这也是我给这题的目的。充分型假设的混淆项最多的是将推理搞反。如果大家没从该题明白这点,那这道题的目的就达不到了。

to PAOPAO

第2点我无法给你讲具体。你混得是将大前提推出小前提搞成大概念就能推出小概念。


作者: bryan0806    时间: 2004-11-12 12:17

呵 了解了 解开了长久来心中的疑云


希望lawyer兄能多出点这样的帖子  有趣兼学习!!


作者: paopao    时间: 2004-11-12 12:33
以下是引用lawyer_1在2004-11-12 11:07:00的发言:

第2点我无法给你讲具体。你混得是将大前提推出小前提搞成大概念就能推出小概念。


lawyer:我想把问题搞明白

举个例子

105.


Treatment for hypertension forestalls certain medical expenses by preventing strokes and heart disease. Yet any money so saved amounts to only one-fourth of the expenditures required to treat the hypertensive population. Therefore, there is no economic justification for preventive treatment for hypertension.



Which of the following, if true, is most damaging to the conclusion above?



(A) The many fatal strokes and heart attacks resulting from untreated hypertension cause insignificant medical expenditures but large economic losses of other sorts.


(B) The cost, per patient, of preventive treatment for hypertension would remain constant even if such treatment were instituted on a large scale.


(C) In matters of health care, economic considerations should ideally not be dominant.


(D) Effective prevention presupposes early diagnosis, and programs to ensure early diagnosis are costly.


(E) The net savings in medical resources achieved by some preventive health measures are smaller than the net losses attributable to certain other measures of this kind.



105.


If the results of untreated hypertension cause large economic losses, as choice A claims, then the treatment of hypertension may well be economically justifiable. Therefore choice A is most damaging to the conclusion and is the best answer.



Choices B and D tend to support the conclusion; choice B says that making preventive treatment widespread would not introduce economies of scale,排除另一种可能性,支持 and choice D identifies one aspect of prevention that is both costly and essential.提出另一论据,支持 Choice C undermines a different conclusion-that society should not support treatment for hypertension-but does not damage the conclusion actually drawn. The fact that different preventive health measures have different economic consequences (choice E) gives no specific information about treatment for hypertension, and so cannot affect the conclusion drawn.

我认为选项E就是个大小概念的问题 原文讲的是预防高血压 E讲的是预防疾病 所以OG的解释说这个预防疾病与预防高血压没有关系 无关

这不是说明在演绎题中 概念要一致 不能有大于原文的概念吗

谢谢 真希望能指出我的毛病所在


作者: lawyer_1    时间: 2004-11-12 19:38
建议逻辑在总结时,别机械的得出规律,那是逻辑最忌讳,只见树木,不见森林的规律是有害的。要多从本质上理解为何是这样,不是那样,才会走出逻辑的泥坑。
作者: paopao    时间: 2004-11-12 23:16
lawyer:能帮帮根源在哪吗 OG的那题不是大小概念吗
作者: p200002    时间: 2004-11-13 02:05
22楼的大律师在帮小弟解决一个疑惑.

D为什么不对呢?

Knowing a proposition to be true is impossible only if it cannot be proved true by observation

it cannot be proved true by observation套上了题目前一句 No mathematical proposition can be proven true by observation.
Knowing a proposition to be true is impossible套上了题目后一句it is impossible to know any mathematical proposition to be true.

作者: lawyer_1    时间: 2004-11-13 04:31
to p200002。 你细看我在22楼对D的分析。你的方法不对。你套来套去,目的何在。你这是在作充分型假设题吗。你用22楼的TEST检查一下。
作者: lawyer_1    时间: 2004-11-13 04:39

to PAOPAO

第一。你的规律不对。如我前面分析

第二。你的题根本不是大小概念问题。而是关系不确定。SOME可能包括,也可能不包括原文的概念。我给你讲过SOME的含义。可以是1个,也可以是全部。


作者: paopao    时间: 2004-11-13 04:49
以下是引用lawyer_1在2004-11-13 4:39:00的发言:

to PAOPAO


第一。你的规律不对。如我前面分析


第二。你的题根本不是大小概念问题。而是关系不确定。SOME可能包括,也可能不包括原文的概念。我给你讲过SOME的含义。可以是1个,也可以是全部。


(E) The net savings in medical resources achieved by some preventive health measures are smaller than the net losses attributable to certain other measures of this kind.






The fact that different preventive health measures have different economic consequences (choice E) gives no specific information about treatment for hypertension, and so cannot affect the conclusion drawn.

lawyer:怎么说啊 能再讲得明白点吗 我感觉自己挺蠢的


作者: lawyer_1    时间: 2004-11-13 05:17
E指的是某些措施的情况,原文讲的是某种病的措施。这两者不一定相交。也就是E的情况不一定就是原文的某种病的情况。就像某些人GMAT考了800分,你不一定是其中一个。
作者: paopao    时间: 2004-11-13 05:42

谢谢lawyer 我明白了


作者: snowjing    时间: 2005-8-4 05:27
22楼的分析太经典啦!
作者: sammaijgd    时间: 2005-8-4 11:29
有收获,谢谢
作者: amber0919    时间: 2006-2-22 22:26

作者: amber0919    时间: 2006-4-14 15:11

作者: smileday    时间: 2006-6-26 18:12
up..
作者: sabrina07    时间: 2006-8-28 21:14

多谢!学习中


作者: gonghao    时间: 2006-8-29 09:29
以下是引用lawyer_1在2004-11-4 11:33:00的发言:

以后给答案和分析

24. No mathematical proposition can be proven true by observation. It follows that it is impossible to know any mathematical proposition to be true.

The conclusion follows logically if which one of the following is assumed?

(A) Only propositions that can be proven true can be known to be true

(B) Observation alone cannot be used to prove the truth of any proposition

(C) If a proposition can be proven true by observation then it can be known to be true.

(D) Knowing a proposition to be true is impossible only if it cannot be proved true by observation

(E) Knowing a proposition to be true requires proving it true by observation


个人的一点看法:

其实就按paopao的说法此题也是可以解的

none proposition can be proved by observation。就推得(follows),know any propostion is impossible.

即:observation--》can not prove proposition。接下来就依次推得一个结论,knouwing a proposition ---》impossible

只要将所有得knowing proposition的方式都限定在observation,上述推理就成立了

E就是这样一个限定。


作者: fastfting    时间: 2006-10-23 10:31
以下是引用lawyer_1在2004-11-12 19:38:00的发言:
建议逻辑在总结时,别机械的得出规律,那是逻辑最忌讳,只见树木,不见森林的规律是有害的。要多从本质上理解为何是这样,不是那样,才会走出逻辑的泥坑。

强烈up

总结成条条框框的理论根本没用

如果那些标签(什么充分必要,加not之类)是让人停止思考而不是促进思考,还不如不要


作者: christlulu    时间: 2006-10-23 15:27
哎呀,真是个经典题目,谢谢
作者: 花仙子    时间: 2006-12-23 20:56
up
作者: l980053    时间: 2006-12-24 19:42
没什么混淆啊。就是要将充分条件变为充分必要条件罢了。只要找到一个答案为必要条件即可。只有E成立。原文推理是Knowing a proposition to be true是PORVE BY OBSERVATION的充分条件,只要找到Knowing a proposition to be true为PORVE BY OBSERVATION的必要条件即可
作者: ambrosecelin    时间: 2008-2-23 22:07
看了脑子好晕。。。我的功夫果然没到家。。。
作者: happycg    时间: 2008-4-4 21:28
ddddddddddddddddddddddddddddddddddd
作者: 水里游    时间: 2008-10-8 18:47

没看答案,偶先选E……看看对不对……


作者: 水里游    时间: 2008-10-8 19:08
以下是引用lawyer_1在2004-11-13 5:17:00的发言:
E指的是某些措施的情况,原文讲的是某种病的措施。这两者不一定相交。也就是E的情况不一定就是原文的某种病的情况。就像某些人GMAT考了800分,你不一定是其中一个。

这个解释太形象啦!这样就更清楚这个选项为什么是无关的了~


作者: vwangmeng    时间: 2010-3-31 13:39
有一个问题不太明白。

单从该题目的英语字面意思和备选答案的字面意思来看,E 是根本不对的啊!
作者: blingsing    时间: 2011-8-4 12:21
选D,同意 PAOPAO 的观点。
作者: cyx3271    时间: 2011-8-4 23:41
赞!!!
作者: AlohaDJ    时间: 2011-8-5 00:31
经典!!
作者: forgmat11    时间: 2011-8-6 02:25
D is right !!!
作者: sdcar2010    时间: 2011-8-6 11:58
D is right !!!
-- by 会员 forgmat11 (2011/8/6 2:25:41)



Probably not.
作者: gato    时间: 2011-10-25 17:34
选e
作者: Fugeela    时间: 2017-10-12 01:31
6年过去了。。挖坟也。。。答案在NN们的解释下已经非常有说服力了!写在这里就。。权当记录一下自己的做题思考过程吧 顺便为下次考试攒人品好不好
题目分析
简化一下题目的推理过程:没有S是P ---> 所有S都不是Q(即没有S是Q), 其中S就是mathematical proposition,P是can be proven true by observation,Q要注意一下是can know to be true(语法什么的就不纠结啦。。)
然后,继续分析这个推理,会发现要想成立的话,必须满足:P=Q 或者 P真包含Q (画个文氏图可以很容易理解~当然S和它俩是完全不重合的),而这个也就是题目要我们找的assumption!
再用推理符号表示一下,就是P<--->Q or Q--->.

下面开始逐一看选项:
A. 先扫一眼发现它完全没有提到observation,而且没有强调mathematical(不过往下看会发现所有选项都没强调哈哈),已经可以晾着了。
要分析的话,推理过程为can be known to be true ---> can be proven true,可以发现它的推理方向是ok的;但是里面的P被偷换成范围更大的概念了,没法保证S和P、Q都不重合的前提,KO!
B. 没提到Know,而且把P、Q的概念混在一起的感觉。。直接KO.
C. 推理过程很明晰,P--->Q,方向反了,KO!
D. 推理过程 can't know to be true ---> cannot be proved true by observation,简化一下非Q--->非P,即 P--->Q,发现方向反了,KO!
E. 推理过程 Know to be true ---> prove it true by observation,Q--->,完美!


最后罗嗦一下关于D选项怎么修改成正确答案,可以考虑变指示词,cannot变can,impossible变possible等等,
如: Knowing a proposition to be true is impossible if it cannot be proved true by observation(非P--->非Q
        Knowing a proposition to be true is impossible unless it can be proved true by observation(非P--->非Q
         Knowing a proposition to be true is possible only if it can be proved true by observation(Q--->


最后的最后 晚安啦CD。。







欢迎光临 ChaseDream (https://forum.chasedream.com/) Powered by Discuz! X3.3