Tanya prepared 4 different letters to be sent to 4 different addresses. For each letter, she prepared an envelope with its correct address. If the 4 letters are to be put in to 4 envelops at random, what is the probability that only 1 letter will be put into the envelope with its correct address?
答案是1/3, 请问是怎么做出来的?
谢谢!
分子,C(1,4)*2 (四封信中任選一封放對,另三封都不能放對則有兩種情況)
分母,P(4,4) (四封信全排列就是了)
==> (4*2)/(4*3*2*1) = 8/24 = 1/3
費費數學寶典裡有類似題
兄弟您真是太快了!
我还是不明白,看来我概率好像没学一样。请问为什么是这么算的?能不能说细一点?
先解釋分子如何算的吧~
假設現在有A,B,C,D,四封信,跟甲,乙,丙,丁,四個信封,(正確情形是A配甲.B配乙..etc)
但要求只有一封能配正確,另三封都不能配正確!
情況1=> A配甲配正確了..則另三封的配對法(B配丙, C配丁, D配乙)、(B配丁, C配乙, D配丙)共兩種
情況2=> B配乙配正確了..則另三封的配對法(A配丙, C配丁, D配甲)、(A配丁, C配甲, D配丙)共兩種
....
如上,配正確的情況共四種,所以是C(1,4),而另三封不能配正確的情況各有兩種,
所以是總共可能的情況是 C(1,4)*2=8 ,就是上式的分子嚕~
-------------------------------------------------------------------------------------------
分母,想像成四封信放入四個信封,所以是全排列=>(4,4)= 4*3*2*1=24
以上
欢迎光临 ChaseDream (https://forum.chasedream.com/) | Powered by Discuz! X3.3 |