欢迎大家参与讨论啊
借你帖子问道题:
4, there are 50 people attended in an game. It cost them $100 for the entrance ticket, and they spend $110 on refreshment. How many adults attended the game?
1). Adult paid $3 for each entrance, child paid $2
2) Audlt spend $2 on average on refreshment, child spend $2 on average.
此题的条件2是不充分的吧,是个矛盾方程哦~~~如果lz没记错的话那么此题应选A~~
借你帖子问道题:
4, there are 50 people attended in an game. It cost them $100 for the entrance ticket, and they spend $110 on refreshment. How many adults attended the game?
1). Adult paid $3 for each entrance, child paid $2
2) Audlt spend $2 on average on refreshment, child spend $2 on average.
此题的条件2是不充分的吧,是个矛盾方程哦~~~如果lz没记错的话那么此题应选A~~
agree
好人
感动
many thanks
建议直接贴出来,比较好引用!
怎么到7号就停了呢?
谢谢 好人
4,DS题---已知抛物线Y=X^2+2, K为不是坐标轴的直线,求K与抛物线的交点个数 1)K的斜率=0 (2)K与Y轴截距100 选C
选B
I think the answer should still be C. Any comments?
怎么到7号就停了呢?
后面没有变题库的题都差不多的
4,DS题---已知抛物线Y=X^2+2, K为不是坐标轴的直线,求K与抛物线的交点个数 1)K的斜率=0 (2)K与Y轴截距100 选C
选B
I think the answer should still be C. Any comments?
截距是100已经足够证明有两个交点了啊
42.5个不同的正整数k, m, r, s, t, 和为80,t=40, 且k<m<r<s<t, 问中数的值最大可能是几?
A)16B)
选D
I think the answer should be C. Positive integegers start from 1. So k=1, m=2, r=18. s=19, t=40
4,DS题---已知抛物线Y=X^2+2, K为不是坐标轴的直线,求K与抛物线的交点个数 1)K的斜率=0 (2)K与Y轴截距100 选C
选B
I think the answer should still be C. Any comments?
截距是100已经足够证明有两个交点了啊
NY700:只知道K与Y轴截距100,不知道K的斜率,那么K可能和Y有1个交点 (如下图),也可能和Y有2个交点。
[attachimg]62006[/attachimg]
4,DS题---已知抛物线Y=X^2+2, K为不是坐标轴的直线,求K与抛物线的交点个数 1)K的斜率=0 (2)K与Y轴截距100 选C
选B
I think the answer should still be C. Any comments?
是的,多谢了欢迎光临 ChaseDream (https://forum.chasedream.com/) | Powered by Discuz! X3.3 |