Is │x - y│>│x - z│?
(1) │y│>│z│
(2) x < 0
A. Statement (1) ALONE is sufficient, but statement (2) alone is not sufficient.
B. Statement (2) ALONE is sufficient, but statement (1) alone is not sufficient.
C. BOTH statements TOGETHER are sufficient, but NEITHER statement ALONE is sufficient.
D. EACH statement ALONE is sufficient.
E. Statements (1) and (2) TOGETHER are NOT sufficient.
选E?
对于(1),x=-3,z=-2,y=5时不等式成立,x=-5,z=2,y=-3时不等式不成立。
对于(2),上面两组可推出x<0不充分
1和2一起也不充分。
可以在数轴上画图试试,比较直观。
请问除了带入法以外, 用理论的方式可以证明出来吗?哪位大大能帮帮忙,解释解释?
借用你的帖子吧
[attachimg]65896[/attachimg]Is │x - y│>│x - z│?
就是求 数轴上 x 与 y 的距离是否比 x 与 z 的距离远
(1) │y│>│z│
=> y 到 0 的距离比 z 到 0 的距离远
(2) x < 0
=> x 在数轴上 0 的左边
(1)+(2) = > 由于 y 和 z 有可能在 0 的两边,也有可能在0的一边,所以不能确定。。。
Is │x - y│>│x - z│?
(1) │y│>│z│
(2) x < 0
Problem Stem:
Is the distance between x and y less than the distance between x and z?
Stem1:
y z z y
.......|.......|.......|......|.......|........|......|.......|....
-3 -2 -1 0 1 2 3 4
NOT SUFF as we don't know the x's position.
Stem2:
x<0, We don't know z and y. NOT SUFF.
1+2:
Still we don't know where is y and z. NOT SUFF.
Answer is E.
欢迎光临 ChaseDream (https://forum.chasedream.com/) | Powered by Discuz! X3.3 |