Q13:
If the sequence x1, x2, x3, …, xn, … is such that x1 = 3 and xn+1
= 2xn – 1 for n ≥ 1, then x20 – x19 =
A. 219
B. 220
C. 221
D. 220 - 1
E. 221 - 1
Answer: A
求思路
THANKS A LOTxn+1
= 2xn – 1 ---> xn+1
– 1= 2(xn – 1)----->xn – 1=(x1 – 1)*2^(n-1)
x20
– x19 =x19– 1=(3-1)*2^(19-1)=2^19
看不懂楼上的思路,哪个NN来解释一下啊,详细点,我好几年没学数学了,谢谢哦
If the sequence x1, x2, x3, …, xn, … is such that x1 = 3 and xn+1
= 2xn – 1 for n ≥ 1, then x20 – x19 =
A. 219
B. 220
C. 221
D. 220 - 1
E. 221 - 1 x1=3=2^!+1 x2=5=2^2+1 x3=9=2^3+1 x4=17=2^4+1 : : x19=2^19+1 x20=2^20+1 so x20 – x19 = 2^19 now got it?
x1=3=2^!+1
x2=5=2^2+1
x3=9=2^3+1
x4=17=2^4+1
:
:
x19=2^19+1
x20=2^20+1
so x20 – x19 = 2^19
now got it?
谢谢,知道了。
up
二楼一般法,四楼是归纳法.
都是牛人啊!!
amyding85 发表于 2006-9-4 17:54
Q13:If the sequence x1, x2, x3, …, xn, … is such that x1 = 3 and xn+1   ...
欢迎光临 ChaseDream (https://forum.chasedream.com/) | Powered by Discuz! X3.3 |