ChaseDream

标题: 求教:ttGWD 09-Q32 [打印本页]

作者: hellcomer    时间: 2006-8-11 22:26
标题: 求教:ttGWD 09-Q32

如何证明不是C?

Q32:

What is the remainder when the positive integer x is divided by 8?

(1)     When x is divided by 12, the remainder is 5.

(2)     When x is divided by 18, the remainder is 11.


作者: caterpillarcn    时间: 2006-8-11 23:06

最小公倍数是36,然后求出两个条件给的数,方法如下,
12a+5=18b+11, so a=2  we can get x, x=29+36n(n=integer)  29 divided by 8, remainder is always 5
but if 36n is divided by 8, there are two possible remainders, 4 and 0.

combined the above,we know that the ultimate remainder is not fixed, it's can be
either 1 or 5.

其实不用求出29, 只看12和18的最小公倍数的倍数就可以知道,36n/8的remainder不是恒定的,所以X/8的也不是


作者: hellcomer    时间: 2006-8-11 23:55
thanks.
作者: may08131    时间: 2010-9-3 13:16
看不懂诶 。。。。哪位能解释再清楚丫。。。。。。。
作者: 双鱼游    时间: 2010-9-23 18:02
你看这个帖子,http://forum.chasedream.com/GMAT_Math/thread-51193-1-1.html,求余数的通用方法




欢迎光临 ChaseDream (https://forum.chasedream.com/) Powered by Discuz! X3.3