ChaseDream
标题: gwd 26-29 [打印本页]
作者: pimplekid 时间: 2006-5-27 08:22
标题: gwd 26-29
Q29:
If the sequence x1, x2, x3, …, xn, … is such that x1 = 3 and xn+1
= 2xn – 1 for n ≥ 1, then x20 – x19 =
A. 219
B. 220
C. 221
D. 220 - 1
E. 221 - 1
我怎么都算不出答案,谢谢各位大侠
作者: yaoyao99 时间: 2006-5-27 11:31
X20 - X19
= (2 * X19 - 1) - X19
= X19 - 1
= (2 * X18 - 1) - 1
= 2 * (2 * X17 - 1) - 2
= 2 * (2 * (2 * X16 - 1) - 1) - 2
= 2 * 2 * 2 * X16 - (2 * 2 - 2 - 1) - 1
= 2^18 * X1 - (2^17 - 2^16 - ... - 2^2 - 2^1 - 2^0) - 1
= 2^18 * 3 - sum of(2^k) where k goes from 0 to 17 (see note) - 1
= 2^18 * 3 - 2^0 * (2^18 - 1) / (2 - 1) - 1
= 2^18 * 3 - 1 * 2^18 + 1 - 1
= 2^18 * 2
= 2^19
Note: sum of (x^k) where k goes from y to z = x^y * (x^(z - y + 1) - 1) / (x - 1)
A
作者: pimplekid 时间: 2006-5-31 19:35
谢了,cd真是名不虚传啊,我们这俩人都没作出来。
作者: yaoyao99 时间: 2006-6-1 05:15
It's the formula for geometric series. You just have to know it.
http://mathworld.wolfram.com/GeometricSeries.html
Good luck studying, =)
欢迎光临 ChaseDream (https://forum.chasedream.com/) |
Powered by Discuz! X3.3 |