ChaseDream
搜索
返回列表 发新帖
查看: 1639|回复: 2
打印 上一主题 下一主题

求教 TT GWD-12-6

[复制链接]
楼主
发表于 2006-10-20 13:38:00 | 只看该作者

求教 TT GWD-12-6


    

Q6:


    

A box contains 10 light bulbs, fewer than half of which are
defective.  Two bulbs are to be drawn
simultaneously from the box.  If n of the
bulbs in box are defective, what is the value of n?


    

(1)   The probability that the two bulbs to be
drawn will be defective is 1/15.


    

(2)   The probability that one of the bulbs to be
drawn will be defective and the other will not be defective is 7/15.


    

                  


    

A. Statement (1) ALONE is sufficient, but statement
(2) alone is not sufficient.


    

B. Statement (2) ALONE is sufficient, but statement
(1) alone is not sufficient.


    

C. BOTH statements TOGETHER are sufficient,
but NEITHER statement ALONE is sufficient.


    

D. EACH statement ALONE is sufficient.


    

E. Statements (1) and (2) TOGETHER are NOT
sufficient.

The given answer is D.  However I cannot  use condition 2 to get any integer value solution.

From condition 2,  I got  (n/10) x (10-n)/9 =  7/15  ====>  n x n - 10n + 42 = 0  ===> no integer solution

Did I get anything wrong?

Thanks!


沙发
发表于 2006-10-28 14:06:00 | 只看该作者
你的方程错了,应该是[(n) x (10-n)]*2/(9*10)=7/15。你少乘了一个2。
板凳
发表于 2009-4-12 21:37:00 | 只看该作者
以下是引用bluegold998在2006-10-28 14:06:00的发言:
你的方程错了,应该是[(n) x (10-n)]*2/(9*10)=7/15。你少乘了一个2。

这不是有两个解么: 3和7, 不符合唯一性原则啊。。。。

您需要登录后才可以回帖 登录 | 立即注册

Mark一下! 看一下! 顶楼主! 感谢分享! 快速回复:

手机版|ChaseDream|GMT+8, 2025-2-4 10:43
京公网安备11010202008513号 京ICP证101109号 京ICP备12012021号

ChaseDream 论坛

© 2003-2023 ChaseDream.com. All Rights Reserved.

返回顶部